Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 329: 118149, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38580188

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Calcium oxalate crystals play a key role in the development and recurrence of kidney stones (also known as urolithiasis); thus, inhibiting the formation of these crystals is a central focus of urolithiasis prevention and treatment. Previously, we reported the noteworthy in vitro inhibitory effects of Aspidopterys obcordata fructo oligosaccharide (AOFOS), an active polysaccharide of the traditional Dai medicine Aspidopterys obcordata Hemsl. (commonly known as Hei Gai Guan), on the growth of calcium oxalate crystals. AIM OF THE STUDY: To investigated the effectiveness and mechanism of AOFOS in treating kidney stones. MATERIALS AND METHODS: A kidney stones rats model was developed, followed by examining AOFOS transport dynamics and effectiveness in live rats. Additionally, a correlation between the polysaccharide and calcium oxalate crystals was studied by combining crystallization experiments with density functional theory calculations. RESULTS: The results showed that the polysaccharide was transported to the urinary system. Furthermore, their accumulation was inhibited by controlling their crystallization and modulating calcium ion and oxalate properties in the urine. Consequently, this approach helped effectively prevent kidney stone formation in the rats. CONCLUSIONS: The present study emphasized the role of the polysaccharide AOFOS in modulating crystal properties and controlling crystal growth, providing valuable insights into their potential therapeutic use in managing kidney stone formation.


Subject(s)
Calcium Oxalate , Crystallization , Kidney Calculi , Animals , Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Male , Rats , Kidney Calculi/prevention & control , Kidney Calculi/drug therapy , Rats, Sprague-Dawley , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Disease Models, Animal , Inulin/chemistry , Inulin/pharmacology
2.
BMC Plant Biol ; 24(1): 25, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38166633

ABSTRACT

BACKGROUND: Maize kernel colour is an important index for evaluating maize quality and value and mainly entails two natural pigments, carotenoids and anthocyanins. To analyse the genetic mechanism of maize kernel colour and mine single nucleotide polymorphisms (SNPs) related to kernel colour traits, an association panel including 244 superior maize inbred lines was used to measure and analyse the six traits related to kernel colour in two environments and was then combined with the about 3 million SNPs covering the whole maize genome in this study. Two models (Q + K, PCA + K) were used for genome-wide association analysis (GWAS) of kernel colour traits. RESULTS: We identified 1029QTLs, and two SNPs contained in those QTLs were located in coding regions of Y1 and R1 respectively, two known genes that regulate kernel colour. Fourteen QTLs which contain 19 SNPs were within 200 kb interval of the genes involved in the regulation of kernel colour. 13 high-confidence SNPs repeatedly detected for specific traits, and AA genotypes of rs1_40605594 and rs5_2392770 were the most popular alleles appeared in inbred lines with higher levels. By searching the confident interval of the 13 high-confidence SNPs, a total of 95 candidate genes were identified. CONCLUSIONS: The genetic loci and candidate genes of maize kernel colour provided in this study will be useful for uncovering the genetic mechanism of maize kernel colour, gene cloning in the future. Furthermore, the identified elite alleles can be used to molecular marker-assisted selection of kernel colour traits.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Alleles , Anthocyanins , Color , Seeds/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
BMC Plant Biol ; 23(1): 631, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38062375

ABSTRACT

Maize (Zea mays L.) is an important food and feed crop worldwide and serves as a a vital source of biological trace elements, which are important breeding targets. In this study, 170 maize materials were used to detect QTNs related to the content of Mn, Fe and Mo in maize grains through two GWAS models, namely MLM_Q + K and MLM_PCA + K. The results identified 87 (Mn), 205 (Fe), and 310 (Mo) QTNs using both methods in the three environments. Considering comprehensive factors such as co-location across multiple environments, strict significance threshold, and phenotypic value in multiple environments, 8 QTNs related to Mn, 10 QTNs related to Fe, and 26 QTNs related to Mo were used to identify 44 superior alleles. Consequently, three cross combinations with higher Mn element, two combinations with higher Fe element, six combinations with higher Mo element, and two combinations with multiple element (Mn/Fe/Mo) were predicted to yield offspring with higher numbers of superior alleles, thereby increasing the likelihood of enriching the corresponding elements. Additionally, the candidate genes identified 100 kb downstream and upstream the QTNs featured function and pathways related to maize elemental transport and accumulation. These results are expected to facilitate the screening and development of high-quality maize varieties enriched with trace elements, establish an important theoretical foundation for molecular marker assisted breeding and contribute to a better understanding of the regulatory network governing trace elements in maize.


Subject(s)
Trace Elements , Genome-Wide Association Study , Zea mays/genetics , Plant Breeding , Phenotype
4.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985565

ABSTRACT

The development of Dai medicine is relatively slow, and Zanthoxylum has great economic and medicinal value. It is still difficult to obtain medicinal components from the low-polarity parts of Zanthoxylum belonging to Dai medicine. In this study, we introduced one simple and quick strategy of separating target compounds from the barks of Z. acanthopodium var. timbor by high-performance countercurrent chromatography (HPCCC) with an off-line anti-inflammatory activity screening mode. The development of this strategy was based on the TLC-based generally useful estimation of solvent systems (GUESS) method and HPCCC in combination. This paper presented a rapid method for obtaining target anti-inflammatory compounds. Three lignins were enriched by HPCCC with an off-line inhibition mode of nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophage cells, using petroleum ether-ethyl acetate-methanol-water (3:2:3:2) as the solvent system. The results showed that this method was simple and practical and could be applied to trace the anti-inflammatory components of the low-polarity part in Dai medicine.


Subject(s)
Plants, Medicinal , Zanthoxylum , Countercurrent Distribution/methods , Lignin/pharmacology , Lignin/analysis , Zanthoxylum/chemistry , Chromatography, High Pressure Liquid/methods , Anti-Inflammatory Agents/pharmacology , Solvents , Plant Extracts/chemistry
5.
Carbohydr Polym ; 294: 119777, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868792

ABSTRACT

Aspidopterys obcordata vine is a Chinese Dai ethnic herb used to treat urolithiasis. However, the material basis and underlying mechanisms remain undefined. In this study, a 2.3 kD inulin-like A. obcordata fructan (AOFOS) was isolated by size exclusion column chromatography and characterized by ultrahigh-performance liquid chromatography-ion trap-time of flight mass spectrometry (UPLC-IT-TOF-MS), nuclear magnetic resonance (NMR) spectroscopy, gas chromatography mass spectrometry (GC-MS) and high-performance gel permeation chromatography (HGPC). In addition, AOFOS showed unique anti-urolithiasis activity in Drosophila kidney stone models. Mechanism study indicated that AOFOS reduced the size of calcium oxalate crystals by inhibiting the formation of large size crystals and the generation rate of calcium oxalate crystals as well as the crystal form conversion from calcium oxalate monohydrate (COM) to calcium oxalate dihydrate (COD).


Subject(s)
Kidney Calculi , Malpighiaceae , Calcium Oxalate/chemistry , Crystallization , Fructans , Inulin , Kidney Calculi/chemistry
6.
Nat Prod Res ; 36(10): 2570-2574, 2022 May.
Article in English | MEDLINE | ID: mdl-33759661

ABSTRACT

Amomum maximum Roxb. rhizome is a fork medicine mainly used in South and Southeast Asia. In present study, the hypoglycaemic effects of the ethanolic extract of A. maximum rhizome were demonstrated both on α-glucosidase assay in vitro and streptozotocin (STZ)-induced postprandial hyperglycaemia in mice. Furthermore, six labdane diterpenes, amoxanthin A (1), ottensinin (2), coronarin D (3), coronarin D methyl ether (4), isocoronarin D (5), and zerumin (6), were isolated from its ethyl acetate sub-fraction with the guidance of α-glucosidase inhibitory activity. Among these compounds, 2 and 6 exhibited significant inhibitory effect on α-glucosidase, as well as on STZ-induced high postprandial blood glucose levels in mice. Additionally, molecular docking analysis revealed that 2 and 6 could firmly bind to the active sites of α-glucosidase. These results suggest that compounds 2 and 6 are the main anti-hyperglycaemic agents present in A. maximum, which may demonstrate potential beneficial effects in diabetes management.


Subject(s)
Amomum , Diterpenes , Hyperglycemia , Amomum/chemistry , Animals , Diterpenes/chemistry , Hypoglycemic Agents/analysis , Hypoglycemic Agents/pharmacology , Mice , Molecular Docking Simulation , Plants, Edible , Rhizome/chemistry , alpha-Glucosidases/metabolism
7.
Front Mol Biosci ; 8: 760669, 2021.
Article in English | MEDLINE | ID: mdl-34859050

ABSTRACT

Alcohol dependence (AD) is a condition of alcohol use disorder in which the drinkers frequently develop emotional symptoms associated with a continuous alcohol intake. AD characterized by metabolic disturbances can be quantitatively analyzed by metabolomics to identify the alterations in metabolic pathways. This study aimed to: i) compare the plasma metabolic profiling between healthy and AD-diagnosed individuals to reveal the altered metabolic profiles in AD, and ii) identify potential biological correlates of alcohol-dependent inpatients based on metabolomics and interpretable machine learning. Plasma samples were obtained from healthy (n = 42) and AD-diagnosed individuals (n = 43). The plasma metabolic differences between them were investigated using liquid chromatography-tandem mass spectrometry (AB SCIEX® QTRAP 4500 system) in different electrospray ionization modes with scheduled multiple reaction monitoring scans. In total, 59 and 52 compounds were semi-quantitatively measured in positive and negative ionization modes, respectively. In addition, 39 metabolites were identified as important variables to contribute to the classifications using an orthogonal partial least squares-discriminant analysis (OPLS-DA) (VIP > 1) and also significantly different between healthy and AD-diagnosed individuals using univariate analysis (p-value < 0.05 and false discovery rate < 0.05). Among the identified metabolites, indole-3-carboxylic acid, quinolinic acid, hydroxy-tryptophan, and serotonin were involved in the tryptophan metabolism along the indole, kynurenine, and serotonin pathways. Metabolic pathway analysis revealed significant changes or imbalances in alanine, aspartate, glutamate metabolism, which was possibly the main altered pathway related to AD. Tryptophan metabolism interactively influenced other metabolic pathways, such as nicotinate and nicotinamide metabolism. Furthermore, among the OPLS-DA-identified metabolites, normetanephrine and ascorbic acid were demonstrated as suitable biological correlates of AD inpatients from our model using an interpretable, supervised decision tree classifier algorithm. These findings indicate that the discriminatory metabolic profiles between healthy and AD-diagnosed individuals may benefit researchers in illustrating the underlying molecular mechanisms of AD. This study also highlights the approach of combining metabolomics and interpretable machine learning as a valuable tool to uncover potential biological correlates. Future studies should focus on the global analysis of the possible roles of these differential metabolites and disordered metabolic pathways in the pathophysiology of AD.

8.
Gene ; 802: 145863, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34358628

ABSTRACT

Hydrophobins are small, secreted proteins with important physiological functions in mycelial growth and fungal development. Here, 1 nucleus-specific and 35 allelic hydrophobin genes were identified in the genome of a white rot fungus, Coriolopsis trogii. Among these, 22 were eight-cysteine class I hydrophobin genes and the other 14 were uncommon six-cysteine hydrophobin genes. The six-cysteine hydrophobins were speculated to have originated from a common ancestor. The hydrophobin genes favored a clustering distribution and two recent duplication pairs were identified. The genes had conserved gene structures with three exons and two introns. Cthyd18, Cthyd19, and Cthyd32 were constitutively highly expressed in all developmental stages. Cthyd20, Cthyd21, Cthyd22, Cthyd28, Cthyd30, Cthyd31, and Cthyd33 were highly expressed in mycelia, and Cthyd12 and Cthyd35 in the reproductive stages. Sixteen hydrophobin genes were regulated differently in the transition from mycelia to primordia; Cthyd35 showed maximal upregulation of 1922-fold, and Cthyd23 showed maximal downregulation of 552-fold. Most (32) hydrophobin genes showed significant differential expression between mycelia cultured in different media (potato dextrose agar or broth). Weighted gene co-expression network analysis and promoter analysis revealed that C2H2 zinc finger proteins may regulate hydrophobin genes. These results may support further research into the function and evolution of hydrophobins.


Subject(s)
Fungal Proteins/genetics , Polyporaceae/genetics , Gene Expression Regulation, Fungal , Genome, Fungal , Mycelium/genetics , Mycelium/growth & development , Polyporaceae/growth & development , RNA-Seq , Real-Time Polymerase Chain Reaction
9.
Carbohydr Polym ; 247: 116740, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32829859

ABSTRACT

Pulmonary fibrosis (PF) is a lung disease with highly heterogeneous and mortality rate, but its therapeutic options are now still limited. Corona virus disease 2019 (COVID-19) has been characterized by WHO as a pandemic, and the global number of confirmed COVID-19 cases has been more than 8.0 million. It is strongly supported for that PF should be one of the major complications in COVID-19 patients by the evidences of epidemiology, viral immunology and current clinical researches. The anti-PF properties of naturally occurring polysaccharides have attracted increasing attention in last two decades, but is still lack of a comprehensively understanding. In present review, the resources, structural features, anti-PF activities, and underlying mechanisms of these polysaccharides are summarized and analyzed, which was expected to provide a scientific evidence supporting the application of polysaccharides for preventing or treating PF in COVID-19 patients.


Subject(s)
Betacoronavirus , Biological Products/therapeutic use , Coronavirus Infections/complications , Pandemics , Pneumonia, Viral/complications , Polysaccharides/therapeutic use , Pulmonary Fibrosis/drug therapy , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Bleomycin/toxicity , COVID-19 , Disease Models, Animal , Drug Evaluation, Preclinical , Forkhead Box Protein O3/physiology , Fungi/chemistry , Heterogeneous Nuclear Ribonucleoprotein D0/physiology , Humans , Macrophages/drug effects , Medicine, Chinese Traditional , Mice , Neutrophils/drug effects , Phytotherapy , Plants, Medicinal/chemistry , Polysaccharides/pharmacology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/prevention & control , RNA, Long Noncoding/antagonists & inhibitors , Rats , SARS-CoV-2 , Seaweed/chemistry , Signal Transduction/drug effects , Smad2 Protein/physiology , Smad3 Protein/physiology , Transforming Growth Factor beta1/antagonists & inhibitors
10.
Article in English | MEDLINE | ID: mdl-32328146

ABSTRACT

In Southwestern China, the root of Morinda angustifolia Roxb. has been employed as a folk medicine for treating various types of hepatitis and jaundice. The purpose of this study was to evaluate the hepatoprotective effects of anthraquinones extract from M. angustifolia root (AEMA) in carbon tetrachloride- (CCl4-) induced liver injury in mice and identify the main bioactive components. Results indicated that AEMA pretreatment could significantly, in a dose-dependent manner, attenuate the increased levels of ALT and AST in mice serum induced by CCl4. At doses of 100 and 200 mg/kg, AEMA exhibited significant suppression of the elevated hepatic levels of malondialdehyde (MDA), as well as marked upregulatory effects on the activities of antioxidant enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mice exposed to CCl4. However, AEMA treatment had no effect on the antioxidant enzyme catalase (CAT) or the nonenzymatic antioxidant glutathione (GSH). Furthermore, two anthraquinone constituents were isolated from AEMA and identified as soranjidiol and rubiadin-3-methyl ether. Soranjidiol exhibited similar protective effects to those of AEMA on liver damage induced by CCl4. Overall, our research clearly demonstrated the hepatoprotective effects of the AEMA, and anthraquinones, particularly soranjidiol, should be considered as the main hepatoprotective principles of M. angustifolia. In addition, the underlying mechanism may be, at least in part, related to its antioxidant properties.

11.
Article in English | MEDLINE | ID: mdl-31057651

ABSTRACT

Oenanthe javanica, popularly known as water dropwort, has long been used in various ethnomedical systems in Asia, especially in China, Korean, and Japan, for treating various chronic and acute hepatitis, jaundice, alcohol hangovers, abdominal pain, and inflammatory conditions. The present review aims to provide a general report of the available literature on traditional uses, phytochemical, pharmacological, nutritional, and toxicological data related to the O. javanica as a potential source of new compounds with biological activities. Considering phytochemical studies, coumarins, flavonoids and flavonoid glycosides, organic acids, and polyphenols were the main classes of compounds identified in the whole plant which were correlated with their biological activities such as hepatoprotective, anti-inflammatory, immune enhancement, ethanol elimination, antioxidant, antiviral, neuroprotective, anti-cancer, anticoagulant, anti-fatigue, hypoglycemic, cardiovascular protection, analgesic, and insecticidal activities.

12.
Plant Foods Hum Nutr ; 71(4): 450-453, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27452308

ABSTRACT

Two novel diphenylheptanes, 2,3- dihydro-2 - (4' - hydroxy-phenylethyl) - 6 - [(3″,4″ - dihydroxy-5" - methoxy) phenyl] -4 - pyrone (CG-A) and 4 - dihydro-2 - (4' - hydroxy-phenylmethyl) -6 - [(3",4″ - dihydroxy-5″ - methoxyphenyl) methylene]-pyran-3, 5 - dione (CG-B), were isolated from the dried fruits of Amomum tsaoko, a commercially important spice. This study was designed to investigate their protective effects against H2O2-induced nerve injury, using PC-12 cells to determine the cell cytotoxicity and cell viability. The inhibitory effect on (nitric oxide) NO production was also determined in (lipopolysaccharide) LPS-stimulated macrophage RAW 264.7 cells. The results showed that CG-A and CG-B displayed significant neuroprotective effect and exhibited anti-inflammatory activity in a dose-dependent manner. These findings suggest that CG-A and CG-B are very important nutritional ingredients responsible for the neuroprotective and anti-inflammatory health benefits of A. tsaoko.


Subject(s)
Amomum/chemistry , Anti-Inflammatory Agents/pharmacology , Fruit/chemistry , Heptanes/pharmacology , Neuroprotective Agents/pharmacology , Spices/analysis , Animals , Anti-Inflammatory Agents/chemistry , Catechols/chemistry , Catechols/pharmacology , Cell Survival/drug effects , Heptanes/chemistry , Hydrogen Peroxide/toxicity , Lipopolysaccharides/toxicity , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Neuroprotective Agents/chemistry , Nitric Oxide/metabolism , Oxidative Stress/drug effects , PC12 Cells , Pyrones/chemistry , Pyrones/pharmacology , RAW 264.7 Cells , Rats
13.
EXCLI J ; 14: 706-13, 2015.
Article in English | MEDLINE | ID: mdl-26648822

ABSTRACT

Curcuma phaeocaulis Val. is used in Chinese Pharmacopoeia as health food and folk medicine for removing blood stasis, alleviating pain and tumor therapy. This research was aimed to explore and compare three main bioactivities including anti-oxidant, antitumor and anti-inflammatory activities between the ethanol extract of C. Phaeocaulis and its fractions using different in vitro models. Firstly, 70 % ethanol was used to extract C. Phaeocaulis, and then the crude extract was re-extracted, resulting in petroleum ether (EZ-PE), ethyl acetate (EZ-EA), and water fractions (EZ-W), respectively, and then a series of index was detected. Results showed that all the extracts had medium DPPH radical scavenging activity when the concentration was 200 µg/ml and their DPPH radical scavenging activity was in a concentration-dependent manner. The extracts except ethanol extract of C. Phaeocaulis had almost no cytotoxicity to the survival of RAW264.7 cell when the concentration reached 80 µg/ml, and all of them had medium inhibitory effect on nitrite release. Extracts of C. Phaeocaulis had medium intensity antitumor activity, EZ-PE and EZ-EA fractions significantly inhibited the proliferation of four tumor cells (SMMC-7721 cell lines, HepG-2 cell lines, A549 cell lines and Hela cell lines). C. Phaeocaulis had antioxidant and anti-inflammatory activities, which did not carry out centralized phenomenon when re-extracted. EZ-PE and EZ-EA were active antitumor sites of C. Phaeocaulis.

14.
Carbohydr Polym ; 130: 307-15, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26076631

ABSTRACT

Polysaccharides of Rubus chingii Hu fruit and leaf were extracted to compare their antioxidant, anti-inflammatory, and anticancer activities against breast cancer cells MCF-7 and liver cancer cells Bel-7402. Results showed that all the tested bioactivities of polysaccharides from leaf (L-Ps) were better than those of polysaccharides from fruit (F-Ps). Response surface methodology was then used to optimize the extraction conditions of polysaccharides from leaf. Additionally, polysaccharides from fruit and leaf were characterized and their contents of total sugars, proteins and uronic acid were compared. It was found that polysaccharides from fruit and leaf were similar in IR and UV absorption, but significantly different in contents of total sugars, protein and uronic acid. Their elution profiles of DEAE-Sepharose fast flow column were different too. The main peak of polysaccharides from fruit was eluted with 0.3 mol/l NaCl solution and the main peak of polysaccharides from leaf was eluted with deionized water. The differences between the two polysaccharides may be responsible for their differences in bioactivities. Further studies are required to explore their complete structural characteristics, structure-activity relationship and the mechanism of their activities.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Fruit/chemistry , Plant Leaves/chemistry , Polysaccharides/pharmacology , Rubus/chemistry , Animals , Blotting, Western , Cell Proliferation , Cells, Cultured , Humans , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Neoplasms/drug therapy , Polysaccharides/chemistry , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
15.
Article in English | MEDLINE | ID: mdl-25821492

ABSTRACT

The rhizome of Smilax glabra has been used for a long time as both food and folk medicine in many countries. The present study focused on the active constituents from the rhizome of S. glabra, which possess potential anti-inflammatory activities. As a result, nine known compounds were isolated from the rhizome of S. glabra with the bioassay-guiding, and were identified as syringaresinol (1), lasiodiplodin (2), de-O-methyllasiodiplodin (3), syringic acid (4), 1,4-bis(4-hydroxy-3,5-dimethoxyphenyl)-2,3-bis(hydroxymethyl)-1,4-butanediol (5), lyoniresinol (6), trans-resveratrol (7), trans-caffeic acid methyl ester (8), and dihydrokaempferol (9). Among these compounds, 2 and 3 were isolated for the first time from S. glabra. In addition, the potential anti-inflammatory activities of the isolated compounds were evaluated in vitro in lipopolysaccharide- (LPS-) induced RAW264.7 cells. Results indicated that 4 and 7 showed significant inhibitory effects on NO production of RAW264.7 cells, and 1, 2, 3, and 5 showed moderate suppression effects on induced NO production. 1, 7, and 5 exhibited high inhibitory effects on TNF-α production, with the IC50 values less than 2.3, 4.4, and 16.6 µM, respectively. These findings strongly suggest that compounds 1, 2, 3, 4, 5, 7, and 9 were the potential anti-inflammatory active compositions of S. glabra.

16.
Carbohydr Polym ; 122: 428-36, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25817687

ABSTRACT

The rhizomes of Smilax glabra have been used as both food and folk medicine in many countries for a long time. However, little research has been reported on polysaccharides of S. glabra. In the present study, two polysaccharide fractions, SGP-1 and SGP-2, were isolated from the rhizomes of S. glabra with the number average molecular weights of 1.72 × 10(2)kDa and 1.31 × 10(2)kDa, and the weight average molecular weights of 1.31 × 10(5)kDa and 1.18 × 10(5)kDa, respectively, and their mainly monosaccharide compositions were both galactose and rhamnose (2.5:1). Both SGP-1 and SGP-2 significantly suppressed the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from LPS-induced RAW 264.7 cells, as well as the mRNA expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-6. Additionally, SGP-1 and SGP-2 repressed the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). These findings strongly suggested polysaccharides were also the anti-inflammatory active ingredient for S. glabra, and the potential of SGP-1 and SGP-2 as the anti-inflammatory agents.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation Mediators/metabolism , Inflammation/drug therapy , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mitogen-Activated Protein Kinases/metabolism , Smilax/chemistry , Animals , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Cells, Cultured , Inflammation/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Signaling System , Macrophages/drug effects , Macrophages/immunology , Mice , Mitogen-Activated Protein Kinases/genetics , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphorylation/drug effects , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Rhizome/chemistry
17.
Molecules ; 20(1): 625-44, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25569518

ABSTRACT

Astilbin, a dihydroflavonol derivative found in many food and medicine plants, exhibited multiple pharmacological functions. In the present study, the ethanol extraction of astilbin from the rhizome of smilax glabra Roxb was optimized by response surface methodology (RSM) using Box-Behnken design. Results indicated that the obtained experimental data was well fitted to a second-order polynomial equation by using multiple regression analysis, and the optimal extraction conditions were identified as an extraction time of 40 min, ethanol concentration of 60%, temperature of 73.63 °C, and liquid-solid ratio of 29.89 mL/g for the highest predicted yield of astilbin (15.05 mg/g), which was confirmed through validation experiments. In addition, the anti-inflammatory efficiency of astilbin was evaluated in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results showed that astilbin, at non-cytotoxicity concentrations, significantly suppressed the production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the mRNA expression of inducible nitric oxide synthase (iNOS) and TNF-α in LPS-induced RAW 264.7 cells, but did not affect interleukin-6 (IL-6) release or its mRNA expression. These effects may be related to its up-regulation of the phosphorylation of p65, extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK).


Subject(s)
Anti-Inflammatory Agents/pharmacology , Flavonols/isolation & purification , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Rhizome/chemistry , Smilax/chemistry , Analysis of Variance , Animals , Cell Survival/drug effects , Flavonols/pharmacology , Inflammation Mediators/metabolism , Interleukin-6/metabolism , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Mice , Models, Theoretical , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Food Funct ; 6(2): 431-43, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25464007

ABSTRACT

This study was carried out to isolate ingredients from the seeds of a Chinese spice (Alpinia galangal) and to evaluate their cytotoxic activity on cancer cell lines. Isolation and purification of the phytochemical constituents were conducted using silica gel, Sephadex LH-20 and ODS columns. After extraction using 95% ethanol, the total extracts were re-extracted, resulting in petroleum ether (PE), ethyl acetate (EA) and water fractions, respectively. Activity tests showed that the EA fraction exhibited obvious (p < 0.05) protective effects on H2O2 damaged PC-12 cells at 20 µg mL(-1), and showed much higher (p < 0.05) cytotoxic activity on cancer cell lines than other fractions. Five compounds, 1'-S-1'-acetoxyeugenol acetate (I), 1'-S-1'-acetoxychavicol acetate (II), 2-propenal, 3-[4-(acetyloxy)-3-methoxyphenyl] (III), isocoronarin D (IV) and caryolane-1, 9ß-diol (V), were obtained from the EA fraction and identified by HPLC, UV, MS, and NMR spectroscopic analyses. Compounds III and V were isolated from A. galangal for the first time. Moreover, compounds I, II, IV and V were the main active ingredients for inducing death of the tested cancer cells, and their IC50 values ranged from 60 to 90 µg mL(-1), indicating that these compounds possessed a wide anti-cancer capability. Therefore, A. galangal seeds could be a potential source of healthy food for tumor prevention.


Subject(s)
Alpinia/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Death/drug effects , Plant Extracts/pharmacology , Seeds/chemistry , Spices , Acetates/chemistry , Animals , Cell Line, Tumor , Dextrans , Food Analysis , HeLa Cells , Hep G2 Cells , Humans , Hydrogen Peroxide , PC12 Cells , Rats
19.
Article in English | MEDLINE | ID: mdl-25477999

ABSTRACT

Smilax glabra Roxb. has been used for a long time as both food and folk medicine. In the present study, phenolic-enriched extract of S. glabra (PEESG) was extracted with 70% ethanol and purified by HP-20 column chromatography. Its antioxidant and anti-inflammatory activities were evaluated by radical scavenging assay, reducing power determination, and lipopolysaccharide (LPS)-induced RAW264.7 cells assays, respectively. PEESG exhibited obviously scavenging capacity for DPPH and ABTS radicals, as well as significant reducing power for ferric ion. Particularly, PEESG (12.5-50 µg/mL) showed a significantly higher efficiency for scavenging ABTS than that of ascorbic acid and no significant difference with ascorbic acid for DPPH scavenging. PEESG also possessed a significant suppression effect on proinflammatory mediators production, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), in LPS-induced RAW264.7 cells. In addition, the main ingredients of PEESG were identified using ultrahigh pressure liquid chromatography coupled to electrospray mass spectrometry (U-HPLC-ESI-MS). Seventeen components, including 5-O-caffeoylshikimic acid, neoastilbin, astilbin, neoisoastilbin, isoastilbin, engetin and isoengeletin were identified. These findings strongly suggest the potential of PEESG as a natural antioxidant and anti-inflammatory agent.

20.
BMC Complement Altern Med ; 14: 268, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25070190

ABSTRACT

BACKGROUND: Bushen-Qiangdu-Zhilv Decoction (BQZ) is one of famous traditional Chinese medical formula for treating ankylosing spondylitis (AS). However, the mechanisms underlying effects of BQZ remains unknown. Pro-inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1, play an important role in AS. We therefore evaluated if BQZ could affect the expression of these cytokines. METHODS: Crude extracts were prepared and fractioned with petroleum ether (PE), ethyl acetate (EA), n-butanol (BU) and finally water (ACE). The stability of the extracts was confirmed by high-pressure liquid chromatography (HPLC) analysis. M1-polarized RAW264.7 was induced and subsequently treated with BQZ extracts. Quantitative real-time PCR experiments were performed to measure mRNA expression of TNF-α and IL-1. RESULTS: It was found that TNF-α could be significantly suppressed by ACE extracts, whereas IL-1 was dramatically inhibited by BU extracts, which was further confirmed by dose-dependent experiments. Importantly, MTS assays showed that both ACE and BU extracts had a low cytotoxicity. CONCLUSION: Altogether, our study indicates that BQZ decoction exerts anti-AS effects via its anti-inflammatory activity and may have a low side-effect. Further analysis of the extracts of BQZ decoction could lead to a discovery of some novel drugs adding to therapeutic strategy for AS patients.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Cytokines/genetics , Female , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...