Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(41): 45936-45949, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32917088

ABSTRACT

The composite electron transporting layer (ETL) of metal oxide with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) prevents perovskite from metal electrode erosion and increases p-i-n perovskite solar cell (PVSC) stability. Although the oxide exhibits protective function, an additional work function modifier is still needed for good device performance. Usually, complicated multistep synthesis is employed to have a highly crystalline film that increases manufacturing cost and inhibits scalability. We report a facile synthesis of a novel organic-molecule-capped metal oxide nanoparticle film for the composite ETL. The nanoparticle film not only has a dual function of electron transport and protection but also exhibits work function tunability. Solvothermal-prepared SnO2 nanoparticles are capped with tetrabutylammonium hydroxide (TBAOH) through ligand exchange. The resulting TBAOH-SnO2 nanoparticles disperse well in ethanol and form a uniform film on PCBM. The power conversion efficiency of the device dramatically increases from 14.91 to 18.77% using this layer because of reduced charge accumulation and aligned band structure. The PVSC thermal stability is significantly enhanced by adopting this layer, which prevents migration of I- and Ag. The ligand exchange method extends to other metal oxides, such as TiO2, ITO, and CeO2, demonstrating its broad applicability. These results provide a cornerstone for large-scale manufacture of high-performance and stable PVSCs.

2.
Nanoscale ; 11(43): 20977-20986, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31660547

ABSTRACT

Nanostructures in conducting polymer films can enhance charge carrier and ion transfer, provide porosity with high specific area and confer unique optoelectronic properties for potential applications. A general and facile synthesis has been developed to prepare nanostructured conducting polymer films without the need for using templates. This simple approach employs hyperbranched polymers as additives to tune the morphology of conducting polymer films into a continuous nanofibril network. Nanostructured conducting polymer films with improved crystallinity exhibit good charge carrier transport and stable nanofibril network, without sacrificing either property upon removing residual additives. Polymer field-effect transistor sensors have been used to demonstrate the benefits of the large surface area provided by the nanofibril network. The sensors with porous nanostructures exhibit lower detection limits (two times lower) and faster response times (33% faster) compared to the sensors without nanostructures. This general approach can advance the knowledge and development of nanostructured conducting polymer films for energy harvesting and storage, electronics, catalysts, sensors and biomedical applications.

3.
Langmuir ; 34(51): 15754-15762, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30516386

ABSTRACT

Metal-organic frameworks (MOF) are studied extensively in applications like catalysts, gas storage, and sensors due to their various functional groups and structures. Two-dimensional (2D) MOFs such as triphenylene-based materials show excellent charge transport properties, but thin-film fabrication and organic ligand synthesis are difficult. In this work, we synthesize thiol-based organic ligand, benzenehexathiol (BHT), by a simple one-pot reaction. This facile method is safer and faster than conventional synthesis procedure that requires using liquid ammonia as solvent. Two novel 2D MOF materials, Ag3BHT2 and Au3BHT2, are fabricated by coordinating BHT with either silver (Ag) or gold (Au) ions through liquid-liquid interfacial reaction. The Ag3BHT2 thin film reaches a high electrical conductivity of 363 S cm-1, which has potential applications in electronic devices and sensors.

4.
Sci Rep ; 8(1): 889, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343726

ABSTRACT

High performance p-type thin-film transistor (p-TFT) was realized by a simple process of reactive sputtering from a tin (Sn) target under oxygen ambient, where remarkably high field-effect mobility (µ FE ) of 7.6 cm2/Vs, 140 mV/dec subthreshold slope, and 3 × 104 on-current/off-current were measured. In sharp contrast, the SnO formed by direct sputtering from a SnO target showed much degraded µ FE , because of the limited low process temperature of SnO and sputtering damage. From the first principle quantum-mechanical calculation, the high hole µ FE of SnO p-TFT is due to its considerably unique merit of the small effective mass and single hole band without the heavy hole band. The high performance p-TFTs are the enabling technology for future ultra-low-power complementary-logic circuits on display and three-dimensional brain-mimicking integrated circuits.

5.
Sci Rep ; 7: 40896, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102314

ABSTRACT

Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.

6.
Sci Rep ; 6: 19023, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26744240

ABSTRACT

High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm(2)/Vs field-effect mobility, high ION/IOFF of 2.3 × 10(7), small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals.

7.
Anal Chem ; 85(19): 9305-11, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23971676

ABSTRACT

The present work demonstrates a high efficient and low cost volatile organic compounds (VOCs) sensor. Nowadays, VOCs, which are typically toxic, explosive, flammable, and an environmental hazard, are extensively used in R&D laboratories and industrial productions. Real-time and accurately monitoring the presence of harmful VOC during the usage, storage, or transport of VOCs is extremely important which protects humans and the environment from exposure in case of an accident and leakage of VOCs. The present work utilizes conducting polymer/nanoparticles blends to sense various VOCs by detecting the variation of optical properties. The novel sensor features high sensitivity, high accuracy, quick response, and very low cost. Furthermore, it is easy to fabricate into a sensing chip and can be equipped anywhere such as a laboratory or a factory where the VOCs are either used or produced and on each joint between transporting pipes or each switch of VOC storage tanks. Real-time sensing is achievable on the basis of the instant response to VOC concentrations of explosive limits. Therefore, an alarm can be delivered within a few minutes for in time remedies. This research starts from investigating fundamental properties, processing adjustments, and a performance test and finally extends to real device fabrication that practically performs the sensing capability. The demonstrated results significantly advance the current sensor technology and are promising in commercial validity in the near future for human and environmental safety concerns against hazardous VOCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...