Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(5): e15919, 2023 May.
Article in English | MEDLINE | ID: mdl-37223715

ABSTRACT

Heavy metal pollution of water is a burning issue of today's world. Among several strategies involved for heavy metal remediation purpose, biomineralization has shown great potential. Of late, research has been focused on developing effective mineral adsorbents with reduced time and cost consumption. In this present paper, the Biologically-Induced Synthetic Manganese Carbonate Precipitate (BISMCP) was produced based on the biologically-induced mineralization method, employing Sporosarcina pasteurii in aqueous solutions containing urea and MnCl2. The prepared adsorbent was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) and BET surface area analyzer. EDX analysis showed the elements in the crystal BISMCP were Mn, C, and O. XRD result of BISMCP determined the crystal structure, which is close to rhodochrosite (MnCO3). Spectral peaks of FTIR at 1641.79 cm-1 confirmed the appearance of C[bond, double bond]O binding, with strong stretching of CO32- in Amide I. From the six kinds of BISMCP produced, sample MCP-6 has the higher specific surface area by BET analysis at 109.01 m2/g, with pore size at 8.76 nm and higher pore volume at 0.178 cm3/g. These specifications will be suitable as an adsorbent for heavy metal removal by adsorption process. This study presents a preliminary analysis of the possibility of BISMCP for heavy metals adsorption using ICP multi-element standard solution XIII (As, Cr, Cd, Cu, Ni, and Zn). BISMCP formed from 0.1 MnCl2 and 30 ml of bacteria volume (MCP-6) produced a better adsorbent material than others concentrations, with the adsorption efficiency of total As at 98.9%, Cr at 97.0%, Cu at 94.7%, Cd at 88.3%, Zn at 48.6%, and Ni at 29.5%. Future work could be examined its efficiency adsorbing individual heavy metals.

2.
J Mater Chem B ; 11(1): 10-32, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36484467

ABSTRACT

The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.


Subject(s)
Environmental Science , Metal Nanoparticles , Humans , Green Chemistry Technology/methods , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Metals , Oxides
3.
Materials (Basel) ; 15(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35744290

ABSTRACT

In this study, expired egg white was used as a template, and a sol-gel method was employed to prepare pure-phase TiO2 nano-powder and mixed-phase powders doped with NaF and NaI. The influences of different calcination temperatures, doping elements, and doping amounts during the preparation process on the photocatalytic performance and activity of the prepared TiO2 powders were studied. The results of the experiments showed that the F-doped TiO2 had the highest photocatalytic activity when the doping amount was 1.2%, as examined by EDS, where the sintering temperature was 500 °C. F-doped TiO2 nanoparticles were also synthesized by the sol-gel method using tetrabutyl titanate and NaF mixed with expired egg white protein as the precursor. The F-TiO2 photocatalyst was characterized using FE-SEM, HR-TEM, EDS, XPS, and UV-Vis, and the photocatalytic activity was evaluated by photodegradation of methylene blue under visible light. The results showed that doping with F reduced the energy band gap (3.04 eV) of TiO2, thereby increasing the photocatalytic activity in the visible-light region. The visible-light wavelength range and photocatalytic activity of the catalyst were also affected by the doping amount.

4.
Biology (Basel) ; 10(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34943137

ABSTRACT

Recently developed non-invasive environmental DNA-based (eDNA) techniques have enlightened modern conservation biology, propelling the monitoring/management of natural populations to a more effective and efficient approach, compared to traditional surveys. However, due to rapid-expansion of eDNA, confusion in terminology and collection/analytical pipelines can potentially jeopardize research progression, methodological standardization, and practitioner adoption in several ways. Present investigation reflects the developmental progress of eDNA (sensu stricto) including highlighting the successful case studies in conservation management. The eDNA technique is successfully relevant in several areas of conservation research (invasive/conserve species detection) with a high accuracy and authentication, which gradually upgrading modern conservation approaches. The eDNA technique related bioinformatics (e.g., taxon-specific-primers MiFish, MiBird, etc.), sample-dependent methodology, and advancement of sequencing technology (e.g., oxford-nanopore-sequencing) are helping in research progress. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique with a high accuracy and authentication can be applicable alone or coupled with traditional surveys in conservation biology. However, a comprehensive eDNA-based monitoring program (ecosystem modeling and function) is essential on a global scale for future management decisions.

SELECTION OF CITATIONS
SEARCH DETAIL
...