Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 17(3): e14423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528784

ABSTRACT

Medium-chain-length α,ω-diols (mcl-diols) play an important role in polymer production, traditionally depending on energy-intensive chemical processes. Microbial cell factories offer an alternative, but conventional strains like Escherichia coli and Saccharomyces cerevisiae face challenges in mcl-diol production due to the toxicity of intermediates such as alcohols and acids. Metabolic engineering and synthetic biology enable the engineering of non-model strains for such purposes with P. putida emerging as a promising microbial platform. This study reviews the advancement in diol production using P. putida and proposes a four-module approach for the sustainable production of diols. Despite progress, challenges persist, and this study discusses current obstacles and future opportunities for leveraging P. putida as a microbial cell factory for mcl-diol production. Furthermore, this study highlights the potential of using P. putida as an efficient chassis for diol synthesis.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Polyhydroxyalkanoates/metabolism , Metabolic Engineering , Escherichia coli/genetics , Escherichia coli/metabolism , Synthetic Biology
2.
N Biotechnol ; 77: 20-29, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37348756

ABSTRACT

As a global regulatory mechanism, carbon catabolite repression allows bacteria and eukaryal microbes to preferentially utilize certain substrates from a mixture of carbon sources. The mechanism varies among different species. In Pseudomonas spp., it is mainly mediated by the Crc-Hfq complex which binds to the 5' region of the target mRNAs, thereby inhibiting their translation. This molecular mechanism enables P. putida to rapidly adjust and fine-tune gene expression in changing environments. Hfq is an RNA-binding protein that is ubiquitous and highly conserved in bacterial species. Considering the characteristics of Hfq, and the widespread use and rapid response of Crc-Hfq in P. putida, this complex has the potential to become a general toolbox for post-transcriptional multiplex regulation. In this study, we demonstrate for the first time that transplanting the pseudomonal catabolite repression protein, Crc, into E. coli causes multiplex gene repression. Under the control of Crc, the production of a diester and its precursors was significantly reduced. The effects of Crc introduction on cell growth in both minimal and rich media were evaluated. Two potential factors - off-target effects and Hfq-sequestration - could explain negative effects on cell growth. Simultaneous reduction of off-targeting and increased sequestration of Hfq by the introduction of the small RNA CrcZ, indicated that Hfq sequestration plays a more prominent role in the negative side-effects. This suggests that the negative growth effect can be mitigated by well-controlled expression of Hfq. This study reveals the feasibility of controlling gene expression using heterologous regulation systems.


Subject(s)
Catabolite Repression , Escherichia coli Proteins , Pseudomonas putida , Pseudomonas putida/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas/metabolism , Gene Expression Regulation, Bacterial , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism
3.
Metab Eng ; 75: 110-118, 2023 01.
Article in English | MEDLINE | ID: mdl-36494025

ABSTRACT

Medium-chain-length fatty alcohols have broad applications in the surfactant, lubricant, and cosmetic industries. Their acetate esters are widely used as flavoring and fragrance substances. Pseudomonas putida KT2440 is a promising chassis for fatty alcohol and ester production at the industrial scale due to its robustness, versatility, and high oxidative capacity. However, P. putida has also numerous native alcohol dehydrogenases, which lead to the degradation of these alcohols and thereby hinder its use as an effective biocatalyst. Therefore, to harness its capacity as a producer, we constructed two engineered strains (WTΔpedFΔadhP, GN346ΔadhP) incapable of growing on mcl-fatty alcohols by deleting either a cytochrome c oxidase PedF and a short-chain alcohol dehydrogenase AdhP in P. putida or AdhP in P. putida GN346. Carboxylic acid reductase, phosphopantetheinyl transferase, and alcohol acetyltransferase were expressed in the engineered P. putida strains to produce hexyl acetate. Overexpression of transporters further increased 1-hexanol and hexyl acetate production. The optimal strain G23E-MPAscTP produced 93.8 mg/L 1-hexanol and 160.5 mg/L hexyl acetate, with a yield of 63.1%. The engineered strain is applicable for C6-C10 fatty alcohols and their acetate ester production. This study lays a foundation for P. putida being used as a microbial cell factory for sustainable synthesis of a broad range of products based on medium-chain-length fatty alcohols.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Metabolic Engineering , Esters/metabolism , Fatty Alcohols/metabolism , Acetates/metabolism
4.
Bioresour Technol ; 352: 127111, 2022 May.
Article in English | MEDLINE | ID: mdl-35381336

ABSTRACT

Medium-chain-length α, ω-diols (mcl-diols) are versatile compounds widely used as building blocks of coating materials and polymers. Mcl-diols are currently synthesized through energy intensive chemical process. Recently, esterified diols have been produced from n-alkanes in E. coli by co-expression of the alkane monooxygenase module (AlkBGTL) and the esterification module (Atf1), thereby establishing the technical feasibility of the process. However, esterified diols need to be hydrolyzed for further applications. In this study, we developed bio-catalysts for mcl-diol production from n-alkanes under mild conditions. The engineered P. putida KT2440 with overexpression of Est12 can efficiently hydrolyze esterified diols (C6-C10). Later, the engineered strain was co-cultured with an E. coli strain (AlkBGTL-Atf1) to produce mcl-diols. In a two-stage approach, 5 mM 1,6-hexanediol was produced, 61.5 times of one-stage test, from n-hexane by biocatalysts for the first time. In conclusion, the present work indicates that bio-catalysis offers a green biobased alternative for synthesis of mcl-diols.


Subject(s)
Escherichia coli , Pseudomonas putida , Alcohols , Alkanes , Catalysis , Culture Media , Escherichia coli/genetics
5.
Biotechnol Biofuels ; 14(1): 218, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34801079

ABSTRACT

BACKGROUND: Medium-chain-length α,ω-diols (mcl-diols) are important building blocks in polymer production. Recently, microbial mcl-diol production from alkanes was achieved in E. coli (albeit at low rates) using the alkane monooxygenase system AlkBGTL and esterification module Atf1. Owing to its remarkable versatility and conversion capabilities and hence potential for enabling an economically viable process, we assessed whether the industrially robust P. putida can be a suitable production organism of mcl-diols. RESULTS: AlkBGTL and Atf1 were successfully expressed as was shown by oxidation of alkanes to alkanols, and esterification to alkyl acetates. However, the conversion rate was lower than that by E. coli, and not fully to diols. The conversion was improved by using citrate instead of glucose as energy source, indicating that carbon catabolite repression plays a role. By overexpressing the activator of AlkBGTL-Atf1, AlkS and deleting Crc or CyoB, key genes in carbon catabolite repression of P. putida increased diacetoxyhexane production by 76% and 65%, respectively. Removing Crc/Hfq attachment sites of mRNAs resulted in the highest diacetoxyhexane production. When the intermediate hexyl acetate was used as substrate, hexanol was detected. This indicated that P. putida expressed esterases, hampering accumulation of the corresponding esters and diesters. Sixteen putative esterase genes present in P. putida were screened and tested. Among them, Est12/K was proven to be the dominant one. Deletion of Est12/K halted hydrolysis of hexyl acetate and diacetoxyhexane. As a result of relieving catabolite repression and preventing the hydrolysis of ester, the optimal strain produced 3.7 mM hexyl acetate from hexane and 6.9 mM 6-hydroxy hexyl acetate and diacetoxyhexane from hexyl acetate, increased by 12.7- and 4.2-fold, respectively, as compared to the starting strain. CONCLUSIONS: This study shows that the metabolic versatility of P. putida, and the associated carbon catabolite repression, can hinder production of diols and related esters. Growth on mcl-alcohol and diol esters could be prevented by deleting the dominant esterase. Carbon catabolite repression could be relieved by removing the Crc/Hfq attachment sites. This strategy can be used for efficient expression of other genes regulated by Crc/Hfq in Pseudomonas and related species to steer bioconversion processes.

6.
Microb Cell Fact ; 18(1): 73, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31018856

ABSTRACT

BACKGROUND: Diterpenoids are a large class of natural products with complex structures and broad commercial applications as food additives, important medicines, and fragrances. However, their low abundance in plants and high structural complexity limit their applications. Therefore, it is important to create an efficient diterpenoid-producing yeast cell factory of the production of various high-value diterpenoid compounds in a cost-effective manner RESULTS: In this study, 13R-manoyl oxide (13R-MO; 2.31 mg/L) was produced by expressing CfTPS2 and CfTPS3 from Coleus forskohlii in Saccharomyces cerevisiae. The 13R-MO titer was increased by 142-fold to 328.15 mg/L via the stepwise metabolic engineering of the original strain, including the overexpression of the rate-limiting genes (tHMG1 and ERG20) of the mevalonate pathway, transcription and protein level regulation of ERG9, Bts1p and Erg20F96Cp fusion, and the overexpression of tCfTPS2 and tCfTPS3 (excision of the N-terminal plastid transit peptide sequences of CfTPS2 and CfTPS3). The final titer of 13R-MO reached up to 3 g/L by fed-batch fermentation in a 5 L bioreactor. CONCLUSIONS: In this study, an efficient 13R-MO yeast cell factory was constructed, which achieved the de novo production of 3 g/L of 13R-MO from glucose. To the best of our knowledge, this is the highest 13R-MO titer reported to date. Furthermore, the metabolic engineering strategies presented here could be used to produce other valuable diterpenoid compounds in yeast.


Subject(s)
Diterpenes/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Fermentation , Mevalonic Acid/metabolism , Saccharomyces cerevisiae/genetics
7.
Metab Eng ; 49: 28-35, 2018 09.
Article in English | MEDLINE | ID: mdl-30031850

ABSTRACT

Zerumbone, the predominant sesquiterpenoid component of Zingiber zerumbet, exhibits diverse pharmacological properties. In this study, de novo production of zerumbone was achieved in a metabolically engineered yeast cell factory by introducing α-humulene synthase (ZSS1), α-humulene 8-hydroxylase (CYP71BA1) and zerumbone synthase variant (ZSD1S114A) from Z. zerumbet, together with AtCPR1 from Arabidopsis thaliana into the yeast strain. Multistep metabolic engineering strategies were applied, including the over-expression of the mevalonate (MVA) pathway rate-limiting enzymes tHMG1 and ERG20, regulation of ERG9 by an inducible promoter and competitive pathway deletion to redirect metabolic flux toward the desired product. In the engineered strain, α-humulene production increased by 18-fold, to 92 mg/L compared to that in the original strain. Five cytochrome P450 reductases (CPRs) from different sources were selected for CYP71BA1 adaptability tests, and AtCPR1 from A. thaliana was found to be the optimal, producing 113.16 µg/L of 8-hydroxy-α-humulene. Multicopy integration of CYP71BA1, AtCPR1, ZSS1 and ICE2 (type III membrane protein) genes resulting in strain LW14 increased the production of 8-hydroxy-α-humulene by 134-fold to 15.2 mg/L. Expressing ZSD1S114A in the ura3 site of strain LW14 resulted in the production of 7 mg/L zerumbone. Multicopy integration of ZSD1S114A increased the production of zerumbone to 20.6 mg/L. The high zerumbone-producing strain was used for batch and fed-batch fermentation in a 5-L bioreactor and zerumbone degradation by yeast was observed; the production of zerumbone finally reached 40 mg/L by fed-batch fermentation in a 5-L bioreactor.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Metabolic Engineering , Saccharomyces cerevisiae , Sesquiterpenes/metabolism , Zingiberaceae , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Zingiberaceae/enzymology , Zingiberaceae/genetics
8.
Antonie Van Leeuwenhoek ; 110(5): 677-685, 2017 May.
Article in English | MEDLINE | ID: mdl-28154945

ABSTRACT

Spinosad, a universal bio-pesticide, is obtained from the soil actinomycete Saccharopolyspora spinosa. Dissolved oxygen, an important contributing factor in aerobic microbial fermentation, however, is not always available in sufficient amounts. To alleviate oxygen limitation in spinosad production, three different oxygen vectors, namely oleic acid, toluene, and n-dodecane, were added into early fermentation. Results indicated that n-dodecane was the optimal oxygen vector. Spinosad yield was increased by 44.2% compared to that in the control group in the presence of 0.5% n-dodecane, added after 120 h of incubation. Yields of the test group reached 6.52 mg/g dry cell weight (DCW), while that of the control group was limited to 4.52 mg/g DCW. Metabolomics analysis by gas chromatography coupled to mass spectrometry was performed to demonstrate the metabolism mechanism in the presence and absence of oxygen vector. In total, 78 principal intracellular metabolites in S. spinosa were detected and quantified in the presence and absence of n-dodecane. Levels of some metabolites that were related to the tricarboxylic acid cycle and pentose phosphate pathway varied significantly. Aspartic acid and glucose-1-phosphate levels varied significantly and contributed most in the distinction of the fermentation conditions and phases. The above findings give new insights into the improvement and the metabolomic characteristics of industrial spinosad production.


Subject(s)
Macrolides/metabolism , Metabolomics , Oxygen/metabolism , Saccharopolyspora/drug effects , Saccharopolyspora/metabolism , Aerobiosis , Alkanes/metabolism , Drug Combinations , Fermentation , Gas Chromatography-Mass Spectrometry , Oleic Acid/metabolism , Time Factors , Toluene/metabolism
9.
Appl Biochem Biotechnol ; 172(7): 3433-47, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24532465

ABSTRACT

In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.


Subject(s)
Acinetobacter/metabolism , Alkanes/metabolism , Environmental Restoration and Remediation/methods , Petroleum/metabolism , Pseudomonas/metabolism , Acinetobacter/chemistry , Acinetobacter/genetics , Acinetobacter/isolation & purification , Alkanes/chemistry , Biodegradation, Environmental , Kinetics , Molecular Sequence Data , Phylogeny , Pseudomonas/chemistry , Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...