Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(10): 3316-3326, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35231171

ABSTRACT

Silica coating of inorganic nanoparticles (NPs) is widely employed as a means of providing colloidal stability in aqueous media and surface functionality for a variety of applications, particularly in biology. When the NPs are synthesized with a surface coating of an organic surfactant like oleic acid, silica coating is performed by using the reverse microemulsion method. There are many reports in the literature of the successful application of this method to NaYF4 upconversion NPs (doped with Yb and Er), and we have used this method to coat NaHoF4 NPs designed as a mass cytometry reagent. This method failed when we attempted to apply it to other NaLnF4 NPs (Ln = Sm, Eu, Tb). In this report we describe an investigation of the problem and show how it can be overcome. To control size in the synthesis of NaLnF4 NPs and at the same time maintain size uniformity, it is necessary to adjust the Na/F and F/Ln ratios. Problems with silica coating are associated with substoichiometric F/Ln ratios (F/Ln < 4) that leave Ln oleate salts as a byproduct, often as a phase-separated oily layer that could not be purified from the NPs by precipitation with ethanol and redispersion in hexanes. The nature of the oily byproduct was inferred from a combination of TGA, NMR, and FTIR measurements. We explored five different additional purification procedures, and by adopting the appropriate purification method, NaLnF4 NPs with a variety of compositions and synthesized using different reaction conditions could be coated with a thin shell of silica.


Subject(s)
Nanoparticles , Silicon Dioxide , Ligands , Nanoparticles/chemistry , Silicon Dioxide/chemistry
2.
Langmuir ; 38(8): 2525-2537, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35167296

ABSTRACT

Lanthanide nanoparticles (LnNPs) have the potential to be used as high-sensitivity mass tag reporters in mass cytometry immunoassays. For this application, however, the LnNPs must be made colloidally stable in aqueous buffers, demonstrate minimal non-specific binding to cells, and have functional groups to attach antibodies or other targeting agents. One possible approach to address these requirements is by using lipid coating to modify the surface of the LnNPs. In this work, 39 nm diameter NaYF4:Yb, Er NPs (LnNPs) were coated with a lipid formulation consisting of egg sphingomyelin, 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium propane, cholesterol-(polyethylene glycol-600), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)-2000]. The resulting biotinylated lipid-coated LnNPs were characterized by dynamic light scattering to determine the hydrodynamic size and stability in phosphate buffered saline, and the composition of the lipid coatings was quantified by liquid chromatography-tandem mass spectrometry. The specific and non-specific binding of the biotinylated lipid-coated LnNPs to a model system of functionalized polystyrene microbeads were then tested by both suspension and imaging mass cytometry. We found that targeted binding with minimal non-specific binding can be achieved with the lipid-coated LnNPs and that the lipid composition of the coating has an impact on the performance of the LnNPs as mass cytometry reporters. These results additionally establish the importance of quantifying the composition of lipid-coated nanomaterials to optimize them more effectively for their desired application.


Subject(s)
Lanthanoid Series Elements , Metal Nanoparticles , Nanoparticles , Image Cytometry , Nanoparticles/chemistry , Phosphatidylethanolamines/chemistry , Suspensions
3.
Langmuir ; 37(6): 2146-2152, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33534994

ABSTRACT

NaLnF4 nanoparticles (NPs) with lighter lanthanides (where Ln = La, Ce, Nd, or Pr) are more difficult to prepare than those with heavier lanthanides [Naduviledathu et al. Chem Mater., 2014, 26, 5689]. Our knowledge is weakest for NaLnF4 NPs with the lowest atomic mass lanthanides (Yan's group 1: La to Nd) and more advanced for group 2 (Sm to Tb) NaLnF4 NPs [Mai et al., J. Am. Chem. Soc., 2006, 128, 6426]. Here we focus on the synthesis of NaNdF4 NPs. We employed the high-temperature chemical coprecipitation method and explored the influence of a wide range of synthesis parameters (e.g., reaction time and temperature, precursor ratios (Na+/Nd3+ and F-/Nd3+), choice of a sodium precursor (Na-oleate or NaOH), and the amount of oleic acid) on the size and uniformity of the NPs obtained. We tried to identify "sweet spots" in the reaction space that led to uniform NaNdF4 NPs with sizes appropriate for mass tag applications in mass cytometry. We were able to obtain NPs with a variety of sizes in the range of 5-38 nm with several different shapes (e.g., polyhedra, spheres, and rods). XRD patterns recorded for aliquots collected at different reaction time intervals revealed that NaNdF4 nucleated in the cubic phase (α) and then transformed to the hexagonal phase (ß) as the reaction progressed up to 2 h. A very striking observation was that the NPs synthesized using NaOH as a reactant preferred to remain in the α-phase, and for a lower reaction temperature (285 °C), did not undergo a phase transformation to the ß-phase over 2 h of reaction time. Under similar experimental conditions, NPs prepared using Na-oleate exhibited an α → ß phase transformation. Nevertheless, NaNdF4 NPs prepared at a higher temperature (315 °C) using either of the Na+ precursors exhibited the α → ß phase transformation over time. This transition, however, appeared to be faster in the case of the NPs synthesized using Na-oleate. We found that, in many instances, syntheses carried out using Na-oleate produced more uniform NPs compared to those synthesized using NaOH. Under the conditions we employed for the Na-oleate precursor, the NPs initially formed were polydisperse spheres that evolved into irregular polyhedra and eventually formed more uniform rod-shaped NPs. The aspect ratio of the final NPs depended on the Na+/Nd3+ precursor ratio. High-resolution transmission electron micrographs and corresponding fast Fourier transform of the data provided information about the preferred growth direction of the NaNdF4 nanorods.

4.
Chem Sci ; 10(10): 2965-2974, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30996875

ABSTRACT

Mass cytometry (MC) is a high throughput multiparameter analytical technique for determining biomarker expression in cells. In MC, antibodies (Abs) are tagged with heavy metal isotopes via conjugation to metal chelating polymers (MCPs). To improve the sensitivity of MC towards low abundance biomarkers, we are developing nanoparticle (NP)-based reagents as mass tags for Abs. We examine the use of silica-coated NaHoF4 NPs (d ∼ 12 nm) decorated with PEG5k conjugated to thiol-modified primary or secondary Abs for MC assays. We compare the sensitivity of NP-Ab conjugates to MCP-Ab conjugates towards seven biomarkers with varying expression levels across six cell lines. We also perform a multi-parameter assay using a cocktail of both NP- and MCP-based reagents to detect seven cellular markers in peripheral blood mononuclear cells (PBMCs). In the case of highly abundant markers, signal enhancements from NP-Ab conjugates offer minimal advantages over MCP-Ab conjugates, which already give strong signals. In the case of biomarkers with lower abundance, the level of signal enhancements depended on the nature of the biomarker being detected, or on the type of detection method used. When comparing the indirect detection of CD14 on THP-1 cells using NPs or MCPs conjugated to secondary Abs, the NP reagents offered little signal enhancements compared to the MCP reagents. However, in the case of direct CD14 detection on THP-1 or U937 cells using NPs or MCPs conjugated to primary Abs, a 30- or 450-fold signal enhancement was seen from the NP-based reagent. In the experiments where both NP-Ab and MCP-Ab conjugates were used together to stain PBMCs, we found that the presence of the NP-Ab conjugates did not affect the function of MCP-Ab conjugates, and the NP-Ab conjugates showed minimal non-specific interaction with cells without the target biomarker (CD14). Furthermore, these NP-Ab conjugates could be used to identify rare CD14+ monocytes from the PBMC mixture with a 20-fold signal increase when compared to the use of only MCP-Ab conjugates. Collectively, the strong signal amplification obtained from NP reagents demonstrate the potential of these reagents to be used in conjunction with MCP-reagents to detect rare cellular markers or cell types that may otherwise be overlooked when using MCP-reagents alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...