Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 214: 108907, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972242

ABSTRACT

The frequency and intensity of the occurrence of drought (D) events during winter are increasing in most areas of China. To explore the interactive effects of D and freezing temperature (F) on plants of endangered Cycas panzhihuaensis, some physiochemical characteristics and the lipid profile were determined. Drought and F stress had no or little impact on the traits of leaves, which, however, bleached following a combination of D and F treatment (DF). Drought treatment did not affect the chlorophyll fluorescence parameters and the flavonoid content of C. panzhihuaensis. Besides the increase in flavonoid content, a decrease of photochemical efficiency and an increase of heat dissipation were induced by both F and DF treatment, with the effects being greater in the latter treatment. The malondialdehyde content decreased significantly and the total antioxidant capacity increased significantly in the plants exposed to both D and DF treatments. The D treatment did not impact the amount of phospholipids but led to an accumulation of saccharolipids. Additionally, the amount of both phospholipids and saccharolipids remained unchanged following F treatment but decreased significantly following DF treatment compared with those of the control. The unsaturation level did not change significantly in most lipid classes of membrane glycerolipids following various stresses but increased significantly in phosphatidylserine, monogalactosylmonoacylglycerol, digalactosyldiacylglycerol and sulphoquinovosyldiacylglycerol following D or both D and F treatments. Generally, plants of C. panzhihuaensis showed relatively strong tolerance to individual D stress, while D aggravated the F-induced damage, which was likely caused by the degradation of the membrane glycerolipids.

2.
Front Plant Sci ; 14: 1301560, 2023.
Article in English | MEDLINE | ID: mdl-38143575

ABSTRACT

Introduction: With the climate warming, the occurrence of freezing events is projected to increase in late spring and early autumn in the Northern Hemisphere. Observation of morphological traits showed that Cycas panzhihuaensis was more tolerant to unexpected freezing stress than C. bifida. Energy balance is crucial for plant tolerance to stress. Here, we aimed to determine whether the different responses of the two species to the unpredicted freezing stress were associated with the metabolism of energy and related substances. Methods: The effects of unexpected freezing temperatures on C. panzhihuaensis and C. bifida were studied by measuring chlorophyll fluorescence parameters, energy charge and the profile of nonstructural carbohydrates (NSC) and lipids. Results: C. panzhihuaensis exhibited higher stability of photosynthetic machinery than C. bifida under unpredicted freezing events. Significant interaction between species and treatments were observed in the energy charge, the level of NSC and its most components and the amount of most lipid categories and lipid classes. The decrease of soluble sugar and the increase of neutral glycerolipids at the early freezing stage, the accumulation of membrane glycerolipids at the late freezing stage and the continuous decrease of energy charge during the freezing period were the characteristics of C. panzhihuaensis responding to unexpected freezing stress. The degradation of membrane glycerolipids and the continuous decrease of soluble sugar during the freezing period and the accumulation of neutral glycerolipids and energy charge at the late freezing stage represented the characteristics of C. bifida responses. Discussion: The different freezing sensitivity between C. panzhihuaensis and C. bifida might be associated with the differential patterns of the metabolism of energy, NSC and lipids. C. panzhihuaensis possesses the potential to be introduced to the areas of higher latitudes and altitudes.

SELECTION OF CITATIONS
SEARCH DETAIL
...