Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Environ Sci Technol ; 56(17): 12613-12624, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35960689

ABSTRACT

In situ growth of nanostructures on substrates is a strategy for designing highly efficient catalytic materials. Herein, multimetallic CuCoNi oxide nanowires are synthesized in situ on a three-dimensional nickel foam (NF) substrate (CuCoNi-NF) by a hydrothermal method and applied to peroxydisulfate (PDS) activation as immobilized catalysts. The catalytic performance of CuCoNi-NF is evaluated through the degradation of organic pollutants such as bisphenol A (BPA) and practical wastewater. The results indicate that the NF not only plays an important role as the substrate support but also serves as an internal Ni source for material fabrication. CuCoNi-NF exhibits high activity and stability during PDS activation as it mediates electron transfer from BPA to PDS. CuCoNi-NF first donates electrons to PDS to arrive at an oxidized state and subsequently deprives electrons from BPA to return to the initial state. CuCoNi-NF maintains high catalytic activity in the pH range of 5.2-9.2, adapts to a high ionic strength up to 100 mM, and resists background HCO3- and humic acid. Meanwhile, 76.6% of the total organic carbon can be removed from packaging wastewater by CuCoNi-NF-catalyzed PDS activation. This immobilized catalyst shows promising potential in wastewater treatment, well addressing the separation and recovery of conventional powdered catalysts.


Subject(s)
Nanowires , Oxides , Catalysis , Electrons , Nickel , Oxidation-Reduction , Wastewater
2.
Yao Xue Xue Bao ; 51(11): 1770-6, 2016 11.
Article in Chinese | MEDLINE | ID: mdl-29908136

ABSTRACT

The purpose of this study is to investigate the effects of formulation on the swelling behavior of choline fenofibrate hydrogel matrix tablets and reveal the relation between swelling property and release profile using dynamic image analysis. The volume swelling ratio (SR) and height/width (k) could evaluate the swelling behavior of matrix tablets well. The mount of hydroxypropyl methylcellulose (HPMC) and the ratio between K15M and K4M affected the volume swelling ratio, while PVP didn't. The three factors all impacted k, which was an indicator of the strength of the gel formed by HPMC. The accumulative release ratio and SR, the rate of swelling and the rate of release were compared. The proper model equations were established for the results with an excellent correlation. The results prove that there is a strong relevance between the swelling behavior and release property. This study provides a guideline in the study design for hydrogel matrix tablets.


Subject(s)
Choline/chemistry , Fenofibrate/chemistry , Hydrogels/chemistry , Delayed-Action Preparations , Hypromellose Derivatives/chemistry , Solubility , Tablets
3.
Yao Xue Xue Bao ; 51(10): 1622-8, 2016 10.
Article in Chinese | MEDLINE | ID: mdl-29932618

ABSTRACT

The study was designed to generate an ophthalmic thermosensitive in situ gel with improved mechanical and mucoadhesive properties that may prolong the retention time to enhance the bioavalability of pearl hydrolyzate. The gene was comprised of poloxamer 407, poloxamer188 and Carbopol 934, which were optimized by central composite design and response surface methodology. The rheological properties, transcorneal permeability, retention time and in vitro release behaviors of the optimal gel formulation were investigated. The gel was Newtonian liquid at 25 ℃ and performed as a semisolid gel with non-Newtonian liquid property with a gelation time of 13 s at 35 ℃. Compared with a conventional eye drops, the ophthalmic in situ gel exhibited a sevenfold increase in retention with a sustained release behavior, which was observed with suitable permeability coefficient at 5.58 cm·s-1. In conclusion, the new gel of pearl hydrolyzate prolonged the release duration of drug, which may decrease the frequency of administration of pearl hydrolyzate.


Subject(s)
Acrylates/chemistry , Gels/chemistry , Ophthalmic Solutions/chemistry , Poloxamer/chemistry , Animals , Delayed-Action Preparations , Eye/drug effects , Rheology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...