Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 590
Filter
1.
BMC Cancer ; 24(1): 682, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835015

ABSTRACT

BACKGROUND: Astragaloside IV (AS-IV) is one of the basic components of Astragali radix, that has been shown to have preventive effects against various diseases, including cancers. This study aimed to explore the role of AS-IV in hepatocellular carcinoma (HCC) and its underlying mechanism. METHODS: The cell viability, glucose consumption, lactate production, and extracellular acidification rate (ECAR) in SNU-182 and Huh7 cell lines were detected by specific commercial kits. Western blot was performed to analyze the succinylation level in SNU-182 and Huh7 cell lines. The interaction between lysine acetyltransferase (KAT) 2 A and phosphoglycerate mutase 1 (PGAM1) was evaluated by co-immunoprecipitation and immunofluorescence assays. The role of KAT2A in vivo was explored using a xenografted tumor model. RESULTS: The results indicated that AS-IV treatment downregulated the protein levels of succinylation and KAT2A in SNU-182 and Huh7 cell lines. The cell viability, glucose consumption, lactate production, ECAR, and succinylation levels were decreased in AS-IV-treated SNU-182 and Huh7 cell lines, and the results were reversed after KAT2A overexpression. KAT2A interacted with PGAM1 to promote the succinylation of PGAM1 at K161 site. KAT2A overexpression promoted the viability and glycolysis of SNU-182 and Huh7 cell lines, which were partly blocked following PGAM1 inhibition. In tumor-bearing mice, AS-IV suppressed tumor growth though inhibiting KAT2A-mediated succinylation of PGAM1. CONCLUSION: AS-IV inhibited cell viability and glycolysis in HCC by regulating KAT2A-mediated succinylation of PGAM1, suggesting that AS-IV might be a potential and suitable therapeutic agent for treating HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Survival , Glycolysis , Liver Neoplasms , Phosphoglycerate Mutase , Saponins , Triterpenes , Xenograft Model Antitumor Assays , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Animals , Phosphoglycerate Mutase/metabolism , Mice , Glycolysis/drug effects , Triterpenes/pharmacology , Cell Survival/drug effects , Saponins/pharmacology , Cell Line, Tumor , Histone Acetyltransferases/metabolism , Mice, Nude , Cell Proliferation/drug effects
2.
Sci Rep ; 14(1): 12926, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839842

ABSTRACT

Cuproptosis is a newly defined form of programmed cell death that relies on mitochondria respiration. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis and metastasis. However, whether cuproptosis-related lncRNAs are involved in the pathogenesis of diffuse large B cell lymphoma (DLBCL) remains unclear. This study aimed to identify the prognostic signatures of cuproptosis-related lncRNAs in DLBCL and investigate their potential molecular functions. RNA-Seq data and clinical information for DLBCL were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Cuproptosis-related lncRNAs were screened out through Pearson correlation analysis. Utilizing univariate Cox, least absolute shrinkage and selection operator (Lasso) and multivariate Cox regression analysis, we identified seven cuproptosis-related lncRNAs and developed a risk prediction model to evaluate its prognostic value across multiple groups. GO and KEGG functional analyses, single-sample GSEA (ssGSEA), and the ESTIMATE algorithm were used to analyze the mechanisms and immune status between the different risk groups. Additionally, drug sensitivity analysis identified drugs with potential efficacy in DLBCL. Finally, the protein-protein interaction (PPI) network were constructed based on the weighted gene co-expression network analysis (WGCNA). We identified a set of seven cuproptosis-related lncRNAs including LINC00294, RNF139-AS1, LINC00654, WWC2-AS2, LINC00661, LINC01165 and LINC01398, based on which we constructed a risk model for DLBCL. The high-risk group was associated with shorter survival time than the low-risk group, and the signature-based risk score demonstrated superior prognostic ability for DLBCL patients compared to traditional clinical features. By analyzing the immune landscapes between two groups, we found that immunosuppressive cell types were significantly increased in high-risk DLBCL group. Moreover, functional enrichment analysis highlighted the association of differentially expressed genes with metabolic, inflammatory and immune-related pathways in DLBCL patients. We also found that the high-risk group showed more sensitivity to vinorelbine and pyrimethamine. A cuproptosis-related lncRNA signature was established to predict the prognosis and provide insights into potential therapeutic strategies for DLBCL patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse , RNA, Long Noncoding , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Humans , RNA, Long Noncoding/genetics , Prognosis , Biomarkers, Tumor/genetics , Protein Interaction Maps/genetics , Male , Female , Gene Expression Profiling , Gene Regulatory Networks , Middle Aged
3.
Microcirculation ; : e12854, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690631

ABSTRACT

OBJECTIVE: Designing physiologically adequate microvascular trees is of crucial relevance for bioengineering functional tissues and organs. Yet, currently available methods are poorly suited to replicate the morphological and topological heterogeneity of real microvascular trees because the parameters used to control tree generation are too simplistic to mimic results of the complex angiogenetic and structural adaptation processes in vivo. METHODS: We propose a method to overcome this limitation by integrating a conditional deep convolutional generative adversarial network (cDCGAN) with a local fractal dimension-oriented constrained constructive optimization (LFDO-CCO) strategy. The cDCGAN learns the patterns of real microvascular bifurcations allowing for their artificial replication. The LFDO-CCO strategy connects the generated bifurcations hierarchically to form microvascular trees with a vessel density corresponding to that observed in healthy tissues. RESULTS: The generated artificial microvascular trees are consistent with real microvascular trees regarding characteristics such as fractal dimension, vascular density, and coefficient of variation of diameter, length, and tortuosity. CONCLUSIONS: These results support the adoption of the proposed strategy for the generation of artificial microvascular trees in tissue engineering as well as for computational modeling and simulations of microcirculatory physiology.

4.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Article in English | MEDLINE | ID: mdl-38741339

ABSTRACT

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Subject(s)
Livestock , Manure , Nitrous Oxide , Nitrous Oxide/analysis , Manure/analysis , Animals , Air Pollutants/analysis
5.
Sci Rep ; 14(1): 11008, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744845

ABSTRACT

Multiple studies have shown knockdown of chromobox 7 (CBX7) promotes the regenerative capacity of various cells or tissues. We examined the effect of CBX7 on hepatocyte proliferation and liver regeneration after 2/3 hepatectomy in a mouse model. For in vitro experiments, NCTC 1469 and BNL CL.2 hepatocytes were co-transfected with siRNA-CBX7-1 (si-CBX7-1), siRNA-CBX7-2 (si-CBX7-2), pcDNA-CBX7, si-BMI1-1, si-BMI1-2, pcDNA-BMI1, or their negative control. For in vivo experiments, mice were injected intraperitoneally with lentivirus-packaged shRNA and shRNA CBX7 before hepatectomy. Our results showed that CBX7 was rapidly induced in the early stage of liver regeneration. CBX7 regulated hepatocyte proliferation, cell cycle, and apoptosis of NCTC 1469 and BNL CL.2 hepatocytes. CBX7 interacted with BMI1 and inhibited BMI1 expression in hepatocytes. Silencing BMI1 aggregated the inhibitory effect of CBX7 overexpression on hepatocyte viability and the promotion of apoptosis. Furthermore, silencing BMI1 enhanced the regulatory effect of CBX7 on Nrf2/ARE signaling in HGF-induced hepatocytes. In vivo, CBX7 silencing enhanced liver/body weight ratio in PH mice. CBX7 silencing promoted the Ki67-positive cell count and decreased the Tunel-positive cell count after hepatectomy, and also increased the expression of nuclear Nrf2, HO-1, and NQO-1. Our results suggest that CBX7 silencing may increase survival following hepatectomy by promoting liver regeneration.


Subject(s)
Apoptosis , Cell Proliferation , Hepatocytes , Liver Regeneration , NF-E2-Related Factor 2 , Polycomb Repressive Complex 1 , Signal Transduction , Animals , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Hepatocytes/metabolism , Liver Regeneration/genetics , Apoptosis/genetics , Hepatectomy , Male , Gene Silencing , Mice, Inbred C57BL , Liver/metabolism
6.
Sci Data ; 11(1): 492, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744849

ABSTRACT

Surface ozone is an important air pollutant detrimental to human health and vegetation productivity, particularly in China. However, high resolution surface ozone concentration data is still lacking, largely hindering accurate assessment of associated environmental impacts. Here, we collected hourly ground ozone observations (over 6 million records), remote sensing products, meteorological data, and social-economic information, and applied recurrent neural networks to map hourly surface ozone data (HrSOD) at a 0.1° × 0.1° resolution across China during 2015-2020. The coefficient of determination (R2) values in sample-based, site-based, and by-year cross-validations were 0.72, 0.65 and 0.71, respectively, with the root mean square error (RMSE) values being 11.71 ppb (mean = 30.89 ppb), 12.81 ppb (mean = 30.96 ppb) and 11.14 ppb (mean = 31.26 ppb). Moreover, it exhibits high spatiotemporal consistency with ground-level observations at different time scales (diurnal, seasonal, annual), and at various spatial levels (individual sites and regional scales). Meanwhile, the HrSOD provides critical information for fine-resolution assessment of surface ozone impacts on environmental and human benefits.

7.
Adv Radiat Oncol ; 9(4): 101434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38778827

ABSTRACT

Purpose: To compare the efficacy and safety of Kangfuxin solution and lvpao powder on mucositis induced by radiation therapy in head and neck carcinoma patients. We retrospectively analyzed 114 patients with head and neck malignant tumors in our center. Methods and Materials: Patients were given Kangfuxin solution to rinse the mouth or Lvpao powder sprayed on oral mucosa after the solution use. The side effect was evaluated by Common Terminology Criteria for Adverse Events version 4.0. Results: The grade 3 mucositis occurred in 32.9% (23/70) and 11.4% (5/44) in Kangfuxin solution group and Kangfuxin solution + lvpao powder group, respectively (P = .009). The pain score of the Kangfuxin solution group was significantly higher than that of the Kangfuxin solution and lvpao powder group, with 4.26 ± 0.81 versus 3.75 ± 1.03 (P = .007). The time of symptom relief in the combined group was significantly shorter than that in the single drug group, with 3 days versus 6 days (P = .000). The weight loss of the former groups was bigger than that of the latter group (6.67 ± 1.20 kg vs 5.95 ± 0.94 kg; P = .001). There was no statistical difference in the limitations in mouth opening (P = .164). Conclusions: Lvpao powder is safe and effective as a mucosal repair drug in accelerating the recovery of patients and reducing their body weight.

8.
Research (Wash D C) ; 7: 0388, 2024.
Article in English | MEDLINE | ID: mdl-38812529

ABSTRACT

Thrombosis can cause life-threatening disorders. Unfortunately, current therapeutic methods for thrombosis using injecting thrombolytic medicines systemically resulted in unexpected bleeding complications. Moreover, the absence of practical imaging tools for thrombi raised dangers of undertreatment and overtreatment. This study develops a theranostic drug carrier, Pkr(IR-Ca/Pda-uPA)-cRGD, that enables real-time monitoring of the targeted thrombolytic process of deep vein thrombosis (DVT). Pkr(IR-Ca/Pda-uPA)-cRGD, which is prepared from a Pickering-emulsion-like system, encapsulates both near-infrared-II (NIR-II) contrast agent (IR-1048 dye, loading capacity: 28%) and urokinase plasminogen activators (uPAs, encapsulation efficiency: 89%), pioneering the loading of multiple drugs with contrasting hydrophilicity into one single-drug carrier. Upon intravenous injection, Pkr(IR-Ca/Pda-uPA)-cRGD considerably targets to thrombi selectively (targeting rate: 91%) and disintegrates in response to acidic thrombi to release IR-1048 dye and uPA for imaging and thrombolysis, respectively. Investigations indicate that Pkr(IR-Ca/Pda-uPA)-cRGD enabled real-time visualization of targeted thrombolysis using NIR-II imaging in DVT models, in which thrombi were eliminated (120 min after drug injection) without bleeding complications. This may be the first study using convenient NIR-II imaging for real-time visualization of targeted thrombolysis. It represents the precision medicine that enables rapid response to acquire instantaneous medical images and make necessary real-time adjustments to diagnostic and therapeutic protocols during treatment.

9.
Complement Ther Med ; 82: 103046, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704101

ABSTRACT

BACKGROUND: Despite being widely applied in clinical practice, the wake-promoting effect of acupuncture in poststroke coma patients remains controversial. OBJECTIVE: This study aimed to evaluate the efficacy of acupuncture for the treatment of poststroke coma. METHODS: Randomized controlled trials (RCTs) of acupuncture for treating poststroke coma were identified in PubMed, Cochrane Library, EMBASE, CNKI, WanFang and VIP up to 25 November 2023. The main outcomes were Glasgow Coma Scale (GCS) score, National Institute of Health Stroke Scale (NIHSS) score, awakening ratio and clinically effective ratio. Stata 17 and Review Manager 5.4 software were used for mate analysis. RESULTS: A total of 34 RCTs involving 2757 patients were included. GCS (WMD = 1.78; 95% CI: 1.35 to 2.21) and NIHSS score (WMD = -2.84; 95% CI: -3.84 to -1.84) were significantly increased in acupuncture group compared with control group. Acupuncture combined with routine treatment may be better than routine treatment in improving the awakening ratio (RR= 1.65; 95% CI: 1.24 to 2.91) and the clinically effective ratio (RR= 1.20; 95% CI: 1.13 to 1.27). Some methodological flaws were identified in the included studies, including non-implementation of blinding, inappropriate disease assessment and heterogeneous interventions. CONCLUSIONS: The existing evidence suggests that acupuncture combined with conventional treatment may be an effective treatment for poststroke coma patients. In the meantime, more high-quality RCTs are needed to demonstrate these findings due to methodological weaknesses like randomization, blinding, heterogeneous interventions and long-term follow-up.


Subject(s)
Acupuncture Therapy , Coma , Randomized Controlled Trials as Topic , Stroke , Humans , Acupuncture Therapy/methods , Coma/therapy , Stroke/complications , Stroke/therapy , Glasgow Coma Scale
10.
ACS Appl Mater Interfaces ; 16(22): 28452-28460, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775640

ABSTRACT

The electrocatalytic nitrogen reduction reaction (NRR) presents an alternative method for the Haber-Bosch process, and single-atom catalysts (SACs) to achieve efficient NRR have attracted considerable attention in the past decades. However, whether SACs are more suitable for NRR compared to atomic-cluster catalysts (ACCs) remains to be studied. Herein, we have successfully synthesized both the Fe monomers (Fe1) and trimers (Fe3) on nitrogen-doped carbon catalysts. Both the experiments and DFT calculations indicate that compared to the end-on adsorption of N2 on Fe1 catalysts, N2 activation is enhanced via the side-on adsorption on Fe3 catalysts, and the reaction follows the enzymatic pathway with a reduced free energy barrier for NRR. As a result, the Fe3 catalysts achieved better NRR performance (NH3 yield rate of 27.89 µg h-1 mg-1cat. and Faradaic efficiency of 45.13%) than Fe1 catalysts (10.98 µg h-1 mg-1cat. and 20.98%). Therefore, our research presents guidance to prepare more efficient NRR catalysts.

11.
Bioconjug Chem ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738511

ABSTRACT

Radiation therapy is one of the most common treatments for cancer. However, enhancing tumors' radiation sensitivity and overcoming tolerance remain a challenge. Previous studies have shown that the Ras signaling pathway directly influences tumor radiation sensitivity. Herein, we designed a series of Ras-targeting stabilized peptides, with satisfactory binding affinity (KD = 0.13 µM with HRas) and good cellular uptake. Peptide H5 inhibited downstream phosphorylation of ERK and increased radio-sensitivity in HeLa cells, resulting in significantly reduced clonogenic survival. The stabilized peptides, designed with an N-terminal nucleation strategy, acted as potential radio-sensitizers and broadened the applications of this kind of molecule. This is the first report of using stabilized peptides as radio-sensitizers, broadening the applications of this kind of molecule.

12.
Adv Sci (Weinh) ; : e2307754, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605600

ABSTRACT

Neoantigen peptides hold great potential as vaccine candidates for tumor immunotherapy. However, due to the limitation of antigen cellular uptake and cross-presentation, the progress with neoantigen peptide-based vaccines has obviously lagged in clinical trials. Here, a stapling peptide-based nano-vaccine is developed, comprising a self-assembly nanoparticle driven by the nucleic acid adjuvant-antigen conjugate. This nano-vaccine stimulates a strong tumor-specific T cell response by activating antigen presentation and toll-like receptor signaling pathways. By markedly improving the efficiency of antigen/adjuvant co-delivery to the draining lymph nodes, the nano-vaccine leads to 100% tumor prevention for up to 11 months and without tumor recurrence, heralding the generation of long-term anti-tumor memory. Moreover, the injection of nano-vaccine with signal neoantigen eliminates the established MC-38 tumor (a cell line of murine carcinoma of the colon without exogenous OVA protein expression) in 40% of the mice by inducing potent cytotoxic T lymphocyte infiltration in the tumor microenvironment without substantial systemic toxicity. These findings represent that stapling peptide-based nano-vaccine may serve as a facile, general, and safe strategy to stimulate a strong anti-tumor immune response for the neoantigen peptide-based personalized tumor immunotherapy.

13.
ACS Chem Biol ; 19(5): 1161-1168, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38662199

ABSTRACT

Targeted protein degradation is becoming more and more important in the field of drug development. Compared with proteasomal-based degraders, lysosomal-based degraders have a broader target spectrum of targets, which have been demonstrated to have great potential, especially in degrading undruggable proteins. Recently, we developed a programmable and facile screening PROTAC development platform based on peptide self-assembly termed split-and-mix PROTAC (SM-PROTAC). In this study, we applied this technology for the development of lysosome-based degraders, named a split-and-mix chaperone-mediated autophagy-based degrader (SM-CMAD). We successfully demonstrated SM-CMAD as a universal platform by degrading several targets, including ERα, AR, MEK1/2, and BCR-ABL. Different from other lysosomal-based degraders, SM-CMAD was capable of facile screening with programmable ligand ratios. We believe that our work will promote the development of other multifunctional molecules and clinical translation for lysosomal-based degraders.


Subject(s)
Lysosomes , Proteolysis , Lysosomes/metabolism , Proteolysis/drug effects , Humans , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Autophagy/drug effects
14.
Cell Commun Signal ; 22(1): 227, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610001

ABSTRACT

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck. Vasculogenic mimicry (VM) is crucial for tumor growth and metastasis and refers to the formation of fluid channels by invasive tumor cells rather than endothelial cells. However, the regulatory mechanisms underlying VM during the malignant progression of LSCC remain largely unknown. METHODS: Gene expression and clinical data for LSCC were obtained from the TCGA and Gene GEO (GSE27020) databases. A risk prediction model associated with VM was established using LASSO and Cox regression analyses. Based on their risk scores, patients with LSCC were categorized into high- and low-risk groups. The disparities in immune infiltration, tumor mutational burden (TMB), and functional enrichment between these two groups were examined. The core genes in LSCC were identified using the machine learning (SVM-RFE) and WGCNA algorithms. Subsequently, the involvement of bone morphogenetic protein 2 (BMP2) in VM and metastasis was investigated both in vitro and in vivo. To elucidate the downstream signaling pathways regulated by BMP2, western blotting was performed. Additionally, ChIP experiments were employed to identify the key transcription factors responsible for modulating the expression of BMP2. RESULTS: We established a new precise prognostic model for LSCC related to VM based on three genes: BMP2, EPO, and AGPS. The ROC curves from both TCGA and GSE27020 validation cohorts demonstrated precision survival prediction capabilities, with the nomogram showing some net clinical benefit. Multiple algorithm analyses indicated BMP2 as a potential core gene. Further experiments suggested that BMP2 promotes VM and metastasis in LSCC. The malignant progression of LSCC is promoted by BMP2 via the activation of the PI3K-AKT signaling pathway, with the high expression of BMP2 in LSCC resulting from its transcriptional activation by runt-related transcription factor 1 (RUNX1). CONCLUSION: BMP2 predicts poor prognosis in LSCC, promotes LSCC VM and metastasis through the PI3K-AKT signaling pathway, and is transcriptionally regulated by RUNX1. BMP2 may be a novel, precise, diagnostic, and therapeutic biomarker of LSCC.


Subject(s)
Bone Morphogenetic Protein 2 , Head and Neck Neoplasms , Humans , Core Binding Factor Alpha 2 Subunit , Endothelial Cells , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Squamous Cell Carcinoma of Head and Neck/genetics , Signal Transduction
15.
Carbohydr Polym ; 334: 122058, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553243

ABSTRACT

Global public health is seriously threatened by thrombotic disorders because of their high rates of mortality and disability. Most thrombolytic agents, especially protein-based pharmaceuticals, have a short half-life in circulation, reducing their effectiveness in thrombolysis. The creation of an intelligent drug delivery system that delivers medication precisely and releases it under regulated conditions at nearby thrombus sites is essential for effective thrombolysis. In this article, we present a unique medication delivery system (MCRUA) that selectively targets platelets and releases drugs by stimulation from the thrombus' microenvironment. The thrombolytic enzyme urokinase-type plasminogen-activator (uPA) and the anti-inflammatory medication Aspirin (acetylsalicylic acid, ASA) are both loaded onto pH-sensitive CaCO3/cyclodextrin crosslinking metal-organic frameworks (MC) that make up the MCRUA system. c(RGD) is functionalized on the surface of MC, which is functionalized by RGD to an esterification reaction. Additionally, the thrombus site's acidic microenvironment causes MCRUA to disintegrate to release uPA for thrombolysis and aiding in vessel recanalization. Moreover, cyclodextrin-encapsulated ASA enables the treatment of the inflammatory environment within the thrombus, enhancing the antiplatelet aggregation effects and promoting cooperative thrombolysis therapy. When used for thrombotic disorders, our drug delivery system (MCRUA) promotes thrombolysis, suppresses rethrombosis, and enhances biosafety with fewer hemorrhagic side effects.


Subject(s)
Cyclodextrins , Metal-Organic Frameworks , Thrombosis , Humans , Thrombolytic Therapy , Cyclodextrins/therapeutic use , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Urokinase-Type Plasminogen Activator/therapeutic use , Thrombosis/drug therapy , Aspirin/pharmacology , Oligopeptides
16.
Meat Sci ; 213: 109481, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38461675

ABSTRACT

Beef is a popular meat product that can spoil and lose quality during postharvest handling and storage. This review examines different preservation methods for beef, from conventional techniques like low-temperature preservation, irradiation, vacuum packing, and chemical preservatives, to novel approaches like bacteriocin, essential oil, and non-thermal technologies. It also discusses how these methods work and affect beef quality. The review shows that beef spoilage is mainly due to enzymatic and microbial activities that impact beef freshness, texture, and quality. Although traditional preservation methods can extend beef shelf life, they have some drawbacks and limitations. Therefore, innovative preservation methods have been created and tested to improve beef quality and safety. These methods have promising results and potential applications in the beef industry. However, more research is needed to overcome the challenges and barriers for their commercialization. This review gives a comprehensive and critical overview of the current and emerging preservation methods for beef and their implications for the beef supply chain.


Subject(s)
Food Preservation , Red Meat , Animals , Cattle , Food Preservation/methods , Red Meat/microbiology , Food Storage/methods , Food Preservatives/pharmacology , Food Microbiology , Vacuum , Food Handling/methods
17.
Materials (Basel) ; 17(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473471

ABSTRACT

To investigate the influence of temperature and humidity variations on creep in high-performance concrete beams, beam tests were conducted in both natural and laboratory settings. The findings indicate that the variations in creep primarily stem from temperature changes, whereas humidity changes have little influence on fluctuations in both basic creep and total creep. The influence of humidity on creep is more strongly reflected in the magnitude of creep. Functions describing the influence of temperature and humidity on the creep behavior of high-performance concrete (HPC) subjected to fluctuating conditions are proposed. The findings were employed to examine creep deformation in engineering applications across four places. This study complements the correction method for the creep of members under fluctuating temperature and humidity. This research application can provide a basis for the calculation of the long-term deformation of HPC structures in natural environments.

18.
BMC Public Health ; 24(1): 538, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383355

ABSTRACT

BACKGROUND: Large-scale outbreaks of scrub typhus combined with its emergence in new areas as a vector-borne rickettsiosis highlight the ongoing neglect of this disease. This study aims to explore the long-term changes and regional leading factors of scrub typhus in China, with the goal of providing valuable insights for disease prevention and control. METHODS: This study utilized a Bayesian space-time hierarchical model (BSTHM) to examine the spatiotemporal heterogeneity of scrub typhus and analyze the relationship between environmental factors and scrub typhus in southern and northern China from 2006 to 2018. Additionally, a GeoDetector model was employed to assess the predominant influences of geographical and socioeconomic factors in both regions. RESULTS: Scrub typhus exhibits a seasonal pattern, typically occurring during the summer and autumn months (June to November), with a peak in October. Geographically, the high-risk regions, or hot spots, are concentrated in the south, while the low-risk regions, or cold spots, are located in the north. Moreover, the distribution of scrub typhus is influenced by environment and socio-economic factors. In the north and south, the dominant factors are the monthly normalized vegetation index (NDVI) and temperature. An increase in NDVI per interquartile range (IQR) leads to a 7.580% decrease in scrub typhus risk in northern China, and a 19.180% increase in the southern. Similarly, of 1 IQR increase in temperature reduces the risk of scrub typhus by 10.720% in the north but increases it by 15.800% in the south. In terms of geographical and socio-economic factors, illiteracy rate and altitude are the key determinants in the respective areas, with q-values of 0.844 and 0.882. CONCLUSIONS: These results indicated that appropriate climate, environment, and social conditions would increase the risk of scrub typhus. This study provided helpful suggestions and a basis for reasonably allocating resources and controlling the occurrence of scrub typhus.


Subject(s)
Scrub Typhus , Humans , Scrub Typhus/epidemiology , Bayes Theorem , China/epidemiology , Seasons , Economic Factors , Incidence
19.
Small ; : e2311578, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363013

ABSTRACT

Charging LiCoO2 to high voltages yields alluring specific capacities, yet the deleterious phase-transitions lead to significant capacity degradation. Herein, this study demonstrates a novel strategy to stabilize LiCoO2 at 4.6 V by doping with Er and Mg at the Li-site and Co-site, respectively, which is different from the traditional method of doping foreign elements solely at the Co-site. Theoretical calculations and experiments jointly reveal that the inclusion of Mg2+ -dopants at the Co-site curbs the hexagonal-monoclinic phase transitions ≈4.2 V. However, this unintentionally compromises the stability of lattice oxygen in LiCoO2 , exacerbating the undesired phase transition (O3 to H1-3) above 4.45 V. Fascinatingly, the introduction of Er3+ -dopants into Li-sites enhances the stability of lattice oxygen in LiCoO2 , effectively mitigating phase transitions above 4.45 V. Therefore, the Er, Mg co-doped LiCoO2 exhibits high stability over 500 cycles when tested in a half-cell with a cut-off voltage of 4.6 V. Furthermore, the Er, Mg-doped LiCoO2 //graphite pouch-type full cell demonstrates a high energy density of 310.8 Wh kg-1 , preserving 91.3% of its energy over 100 cycles.

20.
PLoS One ; 19(2): e0295263, 2024.
Article in English | MEDLINE | ID: mdl-38354116

ABSTRACT

Most semantic segmentation works have obtained accurate segmentation results through exploring the contextual dependencies. However, there are several major limitations that need further investigation. For example, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. Moreover, local convolutions are commonly used in deep learning models to learn attention and capture local patterns in the data. These convolutions operate on a small neighborhood of the input, focusing on nearby information and disregarding global structural patterns. To address these concerns, we propose a Global Domain Adaptation Attention with Data-Dependent Regulator (GDAAR) method to explore the contextual dependencies. Specifically, to effectively capture both the global distribution information and local appearance details, we suggest using a stacked relation approach. This involves incorporating the feature node itself and its pairwise affinities with all other feature nodes within the network, arranged in raster scan order. By doing so, we can learn a global domain adaptation attention mechanism. Meanwhile, to improve the features similarity belonging to the same segment region while keeping the discriminative power of features belonging to different segments, we design a data-dependent regulator to adjust the global domain adaptation attention on the feature map during inference. Extensive ablation studies demonstrate that our GDAAR better captures the global distribution information for the contextual dependencies and achieves the state-of-the-art performance on several popular benchmarks.


Subject(s)
Benchmarking , Durable Medical Equipment , Semantics , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...