Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Nature ; 630(8017): 631-635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811739

ABSTRACT

The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.

3.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37873455

ABSTRACT

Numerous components of the transcription machinery, including RNA polymerase II (Pol II), accumulate in regions of high local concentration known as clusters, which are thought to facilitate transcription. Using the histone locus of Drosophila nurse cells as a model, we find that Pol II forms long-lived, transcriptionally poised clusters distinct from liquid droplets, which contain unbound and paused Pol II. Depletion of the Integrator complex endonuclease module, but not its phosphatase module or Pol II pausing factors disperses these Pol II clusters. Consequently, histone transcription fails to reach peak levels during S-phase and aberrantly continues throughout the cell cycle. We propose that Pol II clustering is a regulatory step occurring near promoters that limits rapid gene activation to defined times. One Sentence Summary: Using the Drosophila histone locus as a model, we show that clustered RNA polymerase II is poised for synchronous activation.

4.
Angew Chem Int Ed Engl ; 61(37): e202209337, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35856900

ABSTRACT

Additive engineering with organic molecules is of critical importance for achieving high-performance perovskite optoelectronic devices. However, experimentally finding suitable additives is costly and time consuming, while conventional machine learning (ML) is difficult to predict accurately due to the limited experimental data available in this relatively new field. Here, we demonstrate a deep learning method that can predict the effectiveness of additives in perovskite light-emitting diodes (PeLEDs) with a high accuracy up to 96 % by using a small dataset of 132 molecules. This model can maximize the information of the molecules and significantly mitigate the duplicated problem that usually happened with previous models in ML for molecular screening. Very high efficiency PeLEDs with a peak external quantum efficiency up to 22.7 % can be achieved by using the predicated additive. Our work opens a new avenue for further boosting the performance of perovskite optoelectronic devices.

5.
Article in English | MEDLINE | ID: mdl-34001530

ABSTRACT

To predict transcription, one needs a mechanistic understanding of how the numerous required transcription factors (TFs) explore the nuclear space to find their target genes, assemble, cooperate, and compete with one another. Advances in fluorescence microscopy have made it possible to visualize real-time TF dynamics in living cells, leading to two intriguing observations: first, most TFs contact chromatin only transiently; and second, TFs can assemble into clusters through their intrinsically disordered regions. These findings suggest that highly dynamic events and spatially structured nuclear microenvironments might play key roles in transcription regulation that are not yet fully understood. The emerging model is that while some promoters directly convert TF-binding events into on/off cycles of transcription, many others apply complex regulatory layers that ultimately lead to diverse phenotypic outputs. Cracking this kinetic code is an ongoing and challenging task that is made possible by combining innovative imaging approaches with biophysical models.


Subject(s)
Gene Expression Regulation , Transcription Factors/metabolism , Chromatin/metabolism , Microscopy, Fluorescence , Protein Aggregates , Transcription, Genetic
6.
Mol Cell ; 73(6): 1232-1242.e4, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30765194

ABSTRACT

The C-terminal domain (CTD) of RNA polymerase II (Pol II) is composed of repeats of the consensus YSPTSPS and is an essential binding scaffold for transcription-associated factors. Metazoan CTDs have well-conserved lengths and sequence compositions arising from the evolution of divergent motifs, features thought to be essential for development. On the contrary, we show that a truncated CTD composed solely of YSPTSPS repeats supports Drosophila viability but that a CTD with enough YSPTSPS repeats to match the length of the wild-type Drosophila CTD is defective. Furthermore, a fluorescently tagged CTD lacking the rest of Pol II dynamically enters transcription compartments, indicating that the CTD functions as a signal sequence. However, CTDs with too many YSPTSPS repeats are more prone to localize to static nuclear foci separate from the chromosomes. We propose that the sequence complexity of the CTD offsets aberrant behavior caused by excessive repetitive sequences without compromising its targeting function.


Subject(s)
Amino Acid Motifs , Consensus Sequence , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , RNA Polymerase II/metabolism , Repetitive Sequences, Amino Acid , Salivary Glands/enzymology , Animals , Animals, Genetically Modified , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Mutation , Protein Domains , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , Salivary Glands/embryology , Transcription, Genetic , Transcriptional Activation
7.
Methods ; 159-160: 129-137, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30684537

ABSTRACT

The Carboxy-terminal Domain (CTD) of RNA polymerase II (Pol II) plays essential roles in regulating gene expression in eukaryotes. Here, we describe multiple genetic approaches for studying the CTD in Drosophila that complement pre-existing molecular analyses of the Pol II CTD in other experimental models. These approaches will allow one to assess the effects of any CTD mutations in a developmentally complex organism. The approaches discussed in this work can in principle, be applied to analyze other transcription components in eukaryotes.


Subject(s)
Crosses, Genetic , Drosophila/genetics , Gene Editing , Mutation , Protein Domains , RNA Polymerase II/genetics , Animals , Animals, Genetically Modified , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Drosophila/enzymology , Female , Male , RNA Polymerase II/metabolism
8.
Nat Commun ; 8: 15231, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28497792

ABSTRACT

RNA polymerase II contains a repetitive, intrinsically disordered, C-terminal domain (CTD) composed of heptads of the consensus sequence YSPTSPS. The CTD is heavily phosphorylated and serves as a scaffold, interacting with factors involved in transcription initiation, elongation and termination, RNA processing and chromatin modification. Despite being a nexus of eukaryotic gene regulation, the structure of the CTD and the structural implications of phosphorylation are poorly understood. Here we present a biophysical and biochemical interrogation of the structure of the full length CTD of Drosophila melanogaster, which we conclude is a compact random coil. Surprisingly, we find that the repetitive CTD is structurally heterogeneous. Phosphorylation causes increases in radius, protein accessibility and stiffness, without disrupting local structural heterogeneity. Additionally, we show the human CTD is also structurally heterogeneous and able to substitute for the D. melanogaster CTD in supporting fly development to adulthood. This finding implicates conserved structural organization, not a precise array of heptad motifs, as important to CTD function.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Intrinsically Disordered Proteins/metabolism , RNA Polymerase II/metabolism , Amino Acid Sequence , Animals , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Expression Regulation , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Models, Molecular , Phosphorylation , Protein Conformation , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , Transcription, Genetic
9.
Nat Commun ; 8: 15233, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28497798

ABSTRACT

The carboxy-terminal domain (CTD) of the RNA polymerase II (Pol II) large subunit cycles through phosphorylation states that correlate with progression through the transcription cycle and regulate nascent mRNA processing. Structural analyses of yeast and mammalian CTD are hampered by their repetitive sequences. Here we identify a region of the Drosophila melanogaster CTD that is essential for Pol II function in vivo and capitalize on natural sequence variations within it to facilitate structural analysis. Mass spectrometry and NMR spectroscopy reveal that hyper-Ser5 phosphorylation transforms the local structure of this region via proline isomerization. The sequence context of this switch tunes the activity of the phosphatase Ssu72, leading to the preferential de-phosphorylation of specific heptads. Together, context-dependent conformational switches and biased dephosphorylation suggest a mechanism for the selective recruitment of cis-proline-specific regulatory factors and region-specific modulation of the CTD code that may augment gene regulation in developmentally complex organisms.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , RNA Polymerase II/metabolism , Amino Acid Sequence , Animals , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Expression Regulation , Magnetic Resonance Spectroscopy , Mass Spectrometry , Phosphorylation , Proline/chemistry , Proline/genetics , Proline/metabolism , Protein Conformation , Protein Tyrosine Phosphatases/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , Sequence Homology, Amino Acid , Transcription, Genetic
10.
Appl Opt ; 55(18): 4952-7, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27409124

ABSTRACT

A varied-line-spacing switchable holographic grating is demonstrated through a changeable interference pattern recorded in polymer-dispersed liquid crystal. The pattern is generated by the interference between one plane wave and another cylindrical wave. The line spacing and the period of grating can be controlled by varying the distance between the cylindrical lens and the grating sample and by changing the exposure angle between the two beams. Experimental period measurements and calculations show good agreement with the theoretical results. High diffraction efficiency of more than 80% for the middle period of the grating has been achieved under appropriate exposure time of 120 s and intensity of 19.1 mW/cm2. In addition, the diffraction can be switched on and off by virtue of the external driving voltage of approximately 120 V. The grating also possesses a fast response with a rise time of 300 µs and a fall time of 750 µs. This grating, which can change the period in the grating structure to allow switchable diffraction of transmitted light, shows great potential application for diffractive optics.

11.
Opt Express ; 23(24): 31436-45, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698768

ABSTRACT

A tri-color composite volume holographic polymer dispersed liquid crystal (H-PDLC) grating and its application to 3-dimensional (3D) color autostereoscopic display are reported in this paper. The composite volume H-PDLC grating consists of three different period volume H-PDLC sub-gratings. The longer period diffracts red light, the medium period diffracts the green light, and the shorter period diffracts the blue light. To record three different period gratings simultaneously, two photoinitiators are employed. The first initiator consists of methylene blue and p-toluenesulfonic acid and the second initiator is composed of Rose Bengal and N-phenyglycine. In this case, the holographic recording medium is sensitive to entire visible wavelengths, including red, green, and blue so that the tri-color composite grating can be written simultaneously by harnessing three different color laser beams. In the experiment, the red beam comes from a He-Ne laser with an output wavelength of 632.8 nm, the green beam comes from a Verdi solid state laser with an output wavelength of 532 nm, and the blue beam comes from a He-Cd laser with an output wavelength of 441.6 nm. The experimental results show that diffraction efficiencies corresponding to red, green, and blue colors are 57%, 75% and 33%, respectively. Although this diffraction efficiency is not perfect, it is high enough to demonstrate the effect of 3D color autostereoscopic display.

12.
Dev Biol ; 398(2): 206-17, 2015 02 15.
Article in English | MEDLINE | ID: mdl-25481758

ABSTRACT

Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Food , Germ Cells/metabolism , Insulin/metabolism , Ovum/cytology , Signal Transduction , Animals , Apoptosis , Cattle , Cytoplasmic Structures/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Embryo, Nonmammalian/metabolism , Female , Microtubules/metabolism , Models, Biological , Oocytes/metabolism , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , Ovum/metabolism , Peptides/metabolism , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...