Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(5): 4564-4573, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36847653

ABSTRACT

Reconfigurable logic circuits implemented by two-dimensional (2D) ambipolar semiconductors provide a prospective solution for the post-Moore era. It is still a challenge for ambipolar nanomaterials to realize reconfigurable polarity control and rectification with a simplified device structure. Here, an air-gap barristor based on an asymmetric stacking sequence of the electrode contacts was developed to resolve these issues. For the 2D ambipolar channel of WSe2, the barristor can not only be reconfigured as an n- or p-type unipolar transistor but also work as a switchable diode. The air gap around the bottom electrode dominates the reconfigurable behaviors by widening the Schottky barrier here, thus blocking the injection of both electrons and holes. The electrical performances can be improved by optimizing the electrode materials, which achieve an on/off ratio of 104 for the transistor and a rectifying ratio of 105 for the diode. A complementary inverter and a switchable AND/OR logic gate were constructed by using the air-gap barristors as building blocks. This work provides an efficient approach with great potential for low-dimensional reconfigurable electronics.

2.
Nat Commun ; 14(1): 111, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611034

ABSTRACT

Two-dimensional (2D) semiconductors are promising in channel length scaling of field-effect transistors (FETs) due to their excellent gate electrostatics. However, scaling of their contact length still remains a significant challenge because of the sharply raised contact resistance and the deteriorated metal conductivity at nanoscale. Here, we construct a 1D semimetal-2D semiconductor contact by employing single-walled carbon nanotube electrodes, which can push the contact length into the sub-2 nm region. Such 1D-2D heterostructures exhibit smaller van der Waals gaps than the 2D-2D ones, while the Schottky barrier height can be effectively tuned via gate potential to achieve Ohmic contact. We propose a longitudinal transmission line model for analyzing the potential and current distribution of devices in short contact limit, and use it to extract the 1D-2D contact resistivity which is as low as 10-6 Ω·cm2 for the ultra-short contacts. We further demonstrate that the semimetal nanotubes with gate-tunable work function could form good contacts to various 2D semiconductors including MoS2, WS2 and WSe2. The study on 1D semimetal contact provides a basis for further miniaturization of nanoelectronics in the future.

3.
Proc Natl Acad Sci U S A ; 119(17): e2119016119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35452312

ABSTRACT

Low-dimensional semimetal­semiconductor (Sm-S) van der Waals (vdW) heterostructures have shown their potentials in nanoelectronics and nano-optoelectronics recently. It is an important scientific issue to study the interfacial charge transfer as well as the corresponding Fermi-level shift in Sm-S systems. Here we investigated the gate-tunable contact-induced Fermi-level shift (CIFS) behavior in a semimetal single-walled carbon nanotube (SWCNT) that formed a heterojunction with a transition-metal dichalcogenide (TMD) flake. A resistivity comparison methodology and a Fermi-level catch-up model have been developed to measure and analyze the CIFS, whose value is determined by the resistivity difference between the naked SWCNT segment and the segment in contact with the TMD. Moreover, the relative Fermi-level positions of SWCNT and two-dimensional (2D) semiconductors can be efficiently reflected by the gate-tunable resistivity difference. The work function change of the semimetal, as a result of CIFS, will naturally introduce a modified form of the Schottky­Mott rule, so that a modified Schottky barrier height can be obtained for the Sm-S junction. The methodology and physical model should be useful for low-dimensional reconfigurable nanodevices based on Sm-S building blocks.

4.
Nano Lett ; 21(16): 6843-6850, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34347482

ABSTRACT

Low-dimensional semiconductors have shown great potential in switches for their atomically thin geometries and unique properties. It is significant to achieve new tunneling transistors by the efficient stacking methodology with low-dimensional building blocks. Here, we report a one-dimensional (1D)-two-dimensional (2D) mixed-dimensional van der Waals (vdW) heterostructure, which was efficiently fabricated by stacking an individual semiconducting carbon nanotube (CNT) and 2D MoS2. The CNT-MoS2 heterostructure shows specific reconfigurable electrical transport behaviors and can be set as a nn junction, pn diode, and band-to-band tunneling (BTBT) transistor by gate voltage. The transport properties, especially BTBT, could be attributed to the electron transfer from MoS2 to CNT through the ideal vdW interface and the 1D nature of the CNT. The progress suggests a new solution for tunneling transistors by making 1D-2D heterostructures from the rich library of low-dimensional nanomaterials. Furthermore, the reconfigurable functions and nanoscaled junction show that it is prospective to apply CNT-MoS2 heterostructures in future nanoelectronics and nano-optoelectronics.

5.
Proc Natl Acad Sci U S A ; 116(14): 6586-6593, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30890635

ABSTRACT

Low-dimensional nanomaterials, such as one-dimensional (1D) nanomaterials and layered 2D materials, have exhibited significance for their respective unique electronic and optoelectronic properties. Here we show that a mixed-dimensional heterostructure with building blocks from multiple dimensions will present a synergistic effect on photodetection. A carbon nanotube (CNT)-[Formula: see text]-graphene photodetector is representative on this issue. Its spatial resolution can be electrically switched between high-resolution mode (HRM) and low-resolution mode (LRM) revealed by scanning photocurrent microscopy (SPCM). The reconfigurable spatial resolution can be attributed to the asymmetric geometry and the gate-tunable Fermi levels of these low-dimensional materials. Significantly, an interference fringe with 334 nm in period was successfully discriminated by the device working at HRM, confirming the efficient electrical control. Electrical control of spatial resolution in CNT-[Formula: see text]-graphene devices reveals the potential of the mixed-dimensional architectures in future nanoelectronics and nano-optoelectronics.

6.
Sci Rep ; 7(1): 15166, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123129

ABSTRACT

In van der Waals epitaxial growth, the substrate plays a particularly important role in the crystal morphology. Here, we synthesized MoS2 by chemical vapour deposition on silicon carbide (SiC). The obtained MoS2 dendritic crystals show six-fold symmetry, which are different from the conventional triangular shapes on SiO2 substrate and from those with three-fold symmetry on SrTiO3 substrate. Interestingly, these MoS2 dendritic crystals on SiC exhibit an average fractal dimension 1.76, which is slightly larger than the classical Diffusion-limited-Aggregation fractal dimension 1.66. The first principle calculation indicates that the six-fold symmetry of the dendritic MoS2 is determined by the lattice symmetry of SiC. To further demonstrating the substrate effect, we break the natural six-fold lattice symmetry of SiC (0001) into groove arrays through etching the substrate. And then we successfully synthesized cross-type dendritic crystal MoS2 with two-fold symmetry. Its average fractal dimension 1.83 is slightly larger than the fractal dimension 1.76 of the previous MoS2 dendrite with six-fold symmetry. In a word, the symmetry of SiC substrate determined the symmetry and the fractal dimension of the dendritic MoS2. This work provides one possibility of inducing the growth orientation of dendritic crystals through controlling the substrate surface symmetry artificially.

SELECTION OF CITATIONS
SEARCH DETAIL
...