Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
J Appl Toxicol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840409

ABSTRACT

Aging and age-related diseases are intricately associated with oxidative stress and inflammation. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown their promise in mitigating age-related conditions and potentially extending lifespan in various model organisms. However, the efficacy of NSAIDs in older individuals may be influenced by age-related changes in drug metabolism and tolerance, which could result in age-dependent toxicities. This study aimed to evaluate the potential risks of toxicities associated with commonly used NSAIDs (aspirin, ibuprofen, acetaminophen, and indomethacin) on lifespan, healthspan, and oxidative stress levels in both young and old Caenorhabditis elegans. The results revealed that aspirin and ibuprofen were able to extend lifespan in both young and old worms by suppressing ROS generation and enhancing the expression of antioxidant SOD genes. In contrast, acetaminophen and indomeacin accelerated aging process in old worms, leading to oxidative stress damage and reduced resistance to heat stress through the pmk-1/skn-1 pathway. Notably, the harmful effects of acetaminophen and indomeacin were mitigated when pmk-1 was knocked out in the pmk-1(km25) strain. These results underscore the potential lack of benefit from acetaminophen and indomeacin in elderly individuals due to their increased susceptibility to toxicity. Further research is essential to elucidate the underlying mechanisms driving these age-dependent responses and to evaluate the potential risks associated with NSAID use in the elderly population.

2.
Plants (Basel) ; 13(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732428

ABSTRACT

Rice blast, caused by the fungal pathogen Magnaporthe oryzae (M. oryzae), is a highly destructive disease that significantly impacts rice yield and quality. During the infection, M. oryzae secretes effector proteins to subvert the host immune response. However, the interaction between the effector protein AvrPik-D and its target proteins in rice, and the mechanism by which AvrPik-D exacerbates disease severity to facilitate infection, remains poorly understood. In this study, we found that the M. oryzae effector AvrPik-D interacts with the Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) small subunit OsRBCS4. The overexpression of the OsRBCS4 gene in transgenic rice not only enhances resistance to M. oryzae but also induces more reactive oxygen species following chitin treatment. OsRBCS4 localizes to chloroplasts and co-localizes with AvrPik-D within these organelles. AvrPik-D suppresses the transcriptional expression of OsRBCS4 and inhibits Rubisco activity in rice. In conclusion, our results demonstrate that the M. oryzae effector AvrPik-D targets the Rubisco small subunit OsRBCS4 and inhibits its carboxylase and oxygenase activity, thereby suppressing rice innate immunity to facilitate infection. This provides a novel mechanism for the M. oryzae effector to subvert the host immunity to promote infection.

3.
Acta Pharm Sin B ; 14(5): 2228-2246, 2024 May.
Article in English | MEDLINE | ID: mdl-38799646

ABSTRACT

Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist with favorable effects on fatty and glucose metabolism, has been considered the leading candidate drug for nonalcoholic steatohepatitis (NASH) treatment. However, its limited effectiveness in resolving liver fibrosis and lipotoxicity-induced cell death remains a major drawback. Ferroptosis, a newly recognized form of cell death characterized by uncontrolled lipid peroxidation, is involved in the progression of NASH. Nitric oxide (NO) is a versatile biological molecule that can degrade extracellular matrix. In this study, we developed a PEGylated thiolated hollow mesoporous silica nanoparticles (MSN) loaded with OCA, as well as a ferroptosis inhibitor liproxsatin-1 and a NO donor S-nitrosothiol (ONL@MSN). Biochemical analyses, histology, multiplexed flow cytometry, bulk-tissue RNA sequencing, and fecal 16S ribosomal RNA sequencing were utilized to evaluate the effects of the combined nanoparticle (ONL@MSN) in a mouse NASH model. Compared with the OCA-loaded nanoparticles (O@MSN), ONL@MSN not only protected against hepatic steatosis but also greatly ameliorated fibrosis and ferroptosis. ONL@MSN also displayed enhanced therapeutic actions on the maintenance of intrahepatic macrophages/monocytes homeostasis, inhibition of immune response/lipid peroxidation, and correction of microbiota dysbiosis. These findings present a promising synergistic nanotherapeutic strategy for the treatment of NASH by simultaneously targeting FXR, ferroptosis, and fibrosis.

4.
Colloids Surf B Biointerfaces ; 238: 113915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631281

ABSTRACT

Hydrogels have emerged as a new type of wound dressing materials that involved in different stages of the healing processes. However, most of the existing wound dressings mainly offer a protective and moisturizing layer to prevent cross-infection, while the anti-inflammatory and anti-oxidative properties are frequently induced by extra addition of other bioactive molecules. Here, a novel type of sulfated glyco-functionalized hydrogels for wound dressing was prepared through the hybrid supramolecular co-assembly of carbohydrate segments (FG, FGS and FG3S), fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), and diphenylalanine-dopamine (FFD). Implanting sulfated carbohydrates can mimic the structure of glycosaminoglycans (GAGs), promoting cell proliferation and migration, along with anti-inflammatory effects. In situ polymerization of FFD introduced a secondary covalent network to the hydrogel, meanwhile, providing anti-oxidation and adhesion properties to wound surfaces. Furthermore, the dynamic supramolecular interactions within the hydrogels also confer self-healing capabilities to the wound dressing materials. In vivo experiments further demonstrated significantly accelerated healing rates with the multifunctional hydrogel FG3S-FFD, indicating high application potential.


Subject(s)
Anti-Inflammatory Agents , Bandages , Hydrogels , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Animals , Mice , Cell Proliferation/drug effects , Humans , Sulfates/chemistry , Sulfates/pharmacology , Adhesives/chemistry , Adhesives/pharmacology , Cell Movement/drug effects , Male
5.
Acta Trop ; 255: 107203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604326

ABSTRACT

BACKGROUND: Alveolar Echinococcosis (AE) is a malignant zoonotic disease caused by Echinococcus multilocularis infection. Considering whether the lesion is accompanied by vascular invasion (VI) is crucial for treatment strategies. A cost-effective and convenient clinical diagnostic method is urgently needed to supplement current techniques. Consequently, we detected soluble CD155 (sCD155) as a potential biomarker for diagnosing VI in hepatic alveolar echinococcosis (HAE). METHODS: Blood samples were from 42 AE patients and 49 healthy controls (HCs). Based on the computed tomography (CT) and contrast-enhanced CT, AE patients were further categorized into HAE with VI (VIAE; 27 cases) and HAE without VI (NVAE; 15 cases). The sCD155 concentration was measured by an enzyme-linked immunosorbent assay (ELISA). Correlations between sCD155 expression levels and clinicopathological features of AE patients were analyzed using SPSS and GraphPad Prism software. RESULTS: The sCD155 concentrations in AE patients were significantly higher than in HCs. The serum sCD155 level significantly differed between the VIAE and NVAE groups. The univariate analysis showed that VI of AE was significantly correlated with the sCD155 level when the sCD155 was greater than 11 ng/mL. After adjusting for potential confounding factors, the multivariable analysis showed that sCD155 had an independent effect on VI of HAE. The receiver operating characteristic (ROC) curve showed that sCD155 could differentially diagnose VI of HAE at the cut-off value of 11.08 ng/mL with an area under the curve (AUC) value of 0.75. The sensitivity and specificity were 74.07 % and 66.67 %, respectively; the positive and negative predictive values were 74.07 % and 60.00 %, respectively. CONCLUSION: The sCD155 could be a VI biomarker for HAE. Elevated sCD155 levels are indicative of an increased likelihood of concomitant VI in HAE patients, necessitating a thorough evaluation of vascular impairment and the formulation of individualized management strategies.


Subject(s)
Biomarkers , Echinococcosis, Hepatic , Humans , Male , Female , Echinococcosis, Hepatic/diagnosis , Echinococcosis, Hepatic/blood , Biomarkers/blood , Middle Aged , Adult , Aged , Animals , Echinococcus multilocularis , Tomography, X-Ray Computed , ROC Curve , Enzyme-Linked Immunosorbent Assay/methods , Young Adult
6.
Mol Plant Pathol ; 25(4): e13456, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619864

ABSTRACT

The spindle assembly checkpoint (SAC) proteins are conserved among eukaryotes safeguarding chromosome segregation fidelity during mitosis. However, their biological functions in plant-pathogenic fungi remain largely unknown. In this study, we found that the SAC protein MoMad1 in rice blast fungus (Magnaporthe oryzae) localizes on the nuclear envelope and is dispensable for M. oryzae vegetative growth and tolerance to microtubule depolymerizing agent treatment. MoMad1 plays an important role in M. oryzae infection-related development and pathogenicity. The monopolar spindle 1 homologue in M. oryzae (MoMps1) interacts with MoMad1 through its N-terminal domain and phosphorylates MoMad1 at Ser-18, which is conserved within the extended N termini of Mad1s from fungal plant pathogens. This phosphorylation is required for maintaining MoMad1 protein abundance and M. oryzae full virulence. Similar to the deletion of MoMad1, treatment with Mps1-IN-1 (an Mps1 inhibitor) caused compromised appressorium formation and decreased M. oryzae virulence, and these defects were dependent on its attenuating MoMad1 Ser-18 phosphorylation. Therefore, our study indicates the function of Mad1 in rice blast fungal pathogenicity and sheds light on the potential of blocking Mad1 phosphorylation by Mps1 to control crop fungal diseases.


Subject(s)
Ascomycota , Phosphorylation , Virulence , Serine
7.
J Hepatol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670321

ABSTRACT

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of non-alcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. In this study, we investigated the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in the pathogenesis of NASH. METHODS: Hepatic EFHD2 expression was characterized in patients with NASH and two diet-induced NASH mouse models. Single-cell RNA sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma were assessed. Molecular mechanisms underlying EFHD2 function were investigated, while chemical and genetic investigations were performed to assess its potential as a therapeutic target. RESULTS: EFHD2 expression was significantly elevated in hepatic macrophages/monocytes in both patients with NASH and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related hepatocellular carcinoma. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of IFNγR2 (interferon-γ receptor-2) onto the plasma membrane. This interaction mediates interferon-γ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a novel stapled α-helical peptide targeting EFHD2 was shown to be effective in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all patients with NAFLD progress to NASH. A key challenge is identifying the factors that trigger inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of interferon-γ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings support the potential of EFHD2 as a therapeutic target in NASH.

8.
Plants (Basel) ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611457

ABSTRACT

Rice blast disease, caused by the fungus Magnaporthe oryzae, is a significant threat to rice production. Resistant cultivars can effectively resist the invasion of M. oryzae. Thus, the identification of disease-resistant genes is of utmost importance for improving rice production. Autophagy, a cellular process that recycles damaged components, plays a vital role in plant growth, development, senescence, stress response, and immunity. To understand the involvement of autophagy-related genes (ATGs) in rice immune response against M. oryzae, we conducted a comprehensive analysis of 37 OsATGs, including bioinformatic analysis, transcriptome analysis, disease resistance analysis, and protein interaction analysis. Bioinformatic analysis revealed that the promoter regions of 33 OsATGs contained cis-acting elements responsive to salicylic acid (SA) or jasmonic acid (JA), two key hormones involved in plant defense responses. Transcriptome data showed that 21 OsATGs were upregulated during M. oryzae infection. Loss-of-function experiments demonstrated that OsATG6c, OsATG8a, OsATG9b, and OsATG13a contribute to rice blast resistance. Additionally, through protein interaction analysis, we identified five proteins that may interact with OsATG13a and potentially contribute to plant immunity. Our study highlights the important role of autophagy in rice immunity and suggests that OsATGs may enhance resistance to rice blast fungus through the involvement of SA, JA, or immune-related proteins. These findings provide valuable insights for future efforts in improving rice production through the identification and utilization of autophagy-related genes.

9.
Cancer Lett ; 587: 216728, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38431036

ABSTRACT

Lysosomes are crucial organelles responsible for the degradation of cytosolic materials and bulky organelles, thereby facilitating nutrient recycling and cell survival. However, lysosome also acts as an executioner of cell death, including ferroptosis, a distinctive form of regulated cell death that hinges on iron-dependent phospholipid peroxidation. The initiation of ferroptosis necessitates three key components: substrates (membrane phospholipids enriched with polyunsaturated fatty acids), triggers (redox-active irons), and compromised defence mechanisms (GPX4-dependent and -independent antioxidant systems). Notably, iron assumes a pivotal role in ferroptotic cell death, particularly in the context of cancer, where iron and oncogenic signaling pathways reciprocally reinforce each other. Given the lysosomes' central role in iron metabolism, various strategies have been devised to harness lysosome-mediated iron metabolism to induce ferroptosis. These include the re-mobilization of iron from intracellular storage sites such as ferritin complex and mitochondria through ferritinophagy and mitophagy, respectively. Additionally, transcriptional regulation of lysosomal and autophagy genes by TFEB enhances lysosomal function. Moreover, the induction of lysosomal iron overload can lead to lysosomal membrane permeabilization and subsequent cell death. Extensive screening and individually studies have explored pharmacological interventions using clinically available drugs and phytochemical agents. Furthermore, a drug delivery system involving ferritin-coated nanoparticles has been specifically tailored to target cancer cells overexpressing TFRC. With the rapid advancements in understandings the mechanistic underpinnings of ferroptosis and iron metabolism, it is increasingly evident that lysosomes represent a promising target for inducing ferroptosis and combating cancer.


Subject(s)
Iron , Neoplasms , Humans , Cell Death , Iron/metabolism , Ferritins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Lysosomes/metabolism
10.
Article in English | MEDLINE | ID: mdl-38530727

ABSTRACT

Single-view clothing reconstruction usually relies on topologically fixed clothing templates to reduce the problem complexity, but this strategy also makes the reconstructed clothing shape contours simple and lack diversity. In this paper, we propose a novel clothing reconstruction method to generate complex shape contours and open clothing mesh from a single image. At the heart of our work is an implicit unsigned distance field condition on clothing-oriented and pose-stable spatial shape features to represent the clothing from the image. This feature can provide spatially aligned clothing shape priors to improve the pose robustness. It is based on a type-generic clothing template derived from the mainstream clothing generative model to avoid tedious template design and switching. To output open clothing mesh results from noisy clothing unsigned distance fields, we develop a two-stage clothing mesh extraction method. It takes the point clouds as an intermediate representation and produces smooth, plausible and editable clothing mesh results. To provide effective supervision, we construct a pose-rich and shape-complete clothing scan dataset by enhancing clothing pose diversity and complementing missing clothing geometry caused by occlusion. Extensive experiments demonstrate that our method achieves state-of-the-art levels. More importantly, we provide a simple but effective, and low-cost way to reconstruct complex shape contours clothing from a single image.

11.
BMC Ecol Evol ; 24(1): 36, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494489

ABSTRACT

BACKGROUND: Sequence variation produced by mutation provides the ultimate source of natural selection for species adaptation. Unlike nonsynonymous mutation, synonymous mutations are generally considered to be selectively neutral but accumulating evidence suggests they also contribute to species adaptation by regulating the flow of genetic information and the development of functional traits. In this study, we analysed sequence characteristics of ATP6, a housekeeping gene from 139 Phytophthora infestans isolates, and compared the fitness components including metabolic rate, temperature sensitivity, aggressiveness, and fungicide tolerance among synonymous mutations. RESULTS: We found that the housekeeping gene exhibited low genetic variation and was represented by two major synonymous mutants at similar frequency (0.496 and 0.468, respectively). The two synonymous mutants were generated by a single nucleotide substitution but differed significantly in fitness as well as temperature-mediated spatial distribution and expression. The synonymous mutant ending in AT was more common in cold regions and was more expressed at lower experimental temperature than the synonymous mutant ending in GC and vice versa. CONCLUSION: Our results are consistent with the argument that synonymous mutations can modulate the adaptive evolution of species including pathogens and have important implications for sustainable disease management, especially under climate change.


Subject(s)
Fungicides, Industrial , Phytophthora infestans , Silent Mutation , Phytophthora infestans/genetics , Mutation/genetics , Selection, Genetic
12.
mBio ; 15(5): e0008624, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38534157

ABSTRACT

Dynamic transposition of transposable elements (TEs) in fungal pathogens has significant impact on genome stability, gene expression, and virulence to the host. In Magnaporthe oryzae, genome plasticity resulting from TE insertion is a major driving force leading to the rapid evolution and diversification of this fungus. Despite their importance in M. oryzae population evolution and divergence, our understanding of TEs in this context remains limited. Here, we conducted a genome-wide analysis of TE transposition dynamics in the 11 most abundant TE families in M. oryzae populations. Our results show that these TEs have specifically expanded in recently isolated M. oryzae rice populations, with the presence/absence polymorphism of TE insertions highly concordant with population divergence on Geng/Japonica and Xian/Indica rice cultivars. Notably, the genes targeted by clade-specific TEs showed clade-specific expression patterns and are involved in the pathogenic process, suggesting a transcriptional regulation of TEs on targeted genes. Our study provides a comprehensive analysis of TEs in M. oryzae populations and demonstrates a crucial role of recent TE bursts in adaptive evolution and diversification of the M. oryzae rice-infecting lineage. IMPORTANCE: Magnaporthe oryzae is the causal agent of the destructive blast disease, which caused massive loss of yield annually worldwide. The fungus diverged into distinct clades during adaptation toward the two rice subspecies, Xian/Indica and Geng/Japonica. Although the role of TEs in the adaptive evolution was well established, mechanisms underlying how TEs promote the population divergence of M. oryzae remain largely unknown. In this study, we reported that TEs shape the population divergence of M. oryzae by differentially regulating gene expression between Xian/Indica-infecting and Geng/Japonica-infecting populations. Our results revealed a TE insertion-mediated gene expression adaption that led to the divergence of M. oryzae population infecting different rice subspecies.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Genome, Fungal , Oryza , Plant Diseases , DNA Transposable Elements/genetics , Oryza/microbiology , Plant Diseases/microbiology , Virulence/genetics , Genetic Variation , Ascomycota/genetics , Ascomycota/classification , Ascomycota/pathogenicity , Magnaporthe/genetics , Magnaporthe/pathogenicity , Magnaporthe/classification
13.
Appl Microbiol Biotechnol ; 108(1): 228, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386129

ABSTRACT

Fusarium verticillioides is one of the most important fungal pathogens causing maize ear and stalk rots, thereby undermining global food security. Infected seeds are usually unhealthy for consumption due to contamination with fumonisin B1 (FB1) mycotoxin produced by the fungus as a virulence factor. Unveiling the molecular factors that determine fungal development and pathogenesis will help in the control and management of the diseases. Kex2 is a kexin-like Golgi-resident proprotein convertase that is involved in the activation of some important proproteins. Herein, we identified and functionally characterized FvKex2 in relation to F. verticillioides development and virulence by bioinformatics and functional genomics approaches. We found that FvKex2 is required for the fungal normal vegetative growth, because the growth of the ∆Fvkex2 mutant was significantly reduced on culture media compared to the wild-type and complemented strains. The mutant also produced very few conidia with morphologically abnormal shapes when compared with those from the wild type. However, the kexin-like protein was dispensable for the male role in sexual reproduction in F. verticillioides. In contrast, pathogenicity was nearly abolished on wounded maize stalks and sugarcane leaves in the absence of FvKEX2 gene, suggesting an essential role of Fvkex2 in the virulence of F. verticillioides. Furthermore, high-performance liquid chromatography analysis revealed that the ∆Fvkex2 mutant produced a significantly lower level of FB1 mycotoxin compared to the wild-type and complemented strains, consistent with the loss of virulence observed in the mutant. Taken together, our results indicate that FvKex2 is critical for vegetative growth, FB1 biosynthesis, and virulence, but dispensable for sexual reproduction in F. verticillioides. The study presents the kexin-like protein as a potential drug target for the management of the devastating maize ear and stalk rot diseases. Further studies should aim at uncovering the link between FvKex2 activity and FB1 biosynthesis genes. KEY POINTS: •The kexin-like protein FvKex2 contributes significantly to the vegetative growth of Fusarium verticillioides. •The conserved protein is required for fungal conidiation and conidial morphology, but dispensable for sexual reproduction. •Deletion of FvKEX2 greatly attenuates the virulence and mycotoxin production potential of F. verticillioides.


Subject(s)
Fumonisins , Fusarium , Mycotoxins , Male , Humans , Mycotoxins/genetics , Virulence
14.
Antimicrob Agents Chemother ; 68(3): e0120223, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38349157

ABSTRACT

Cystic echinococcosis (CE) is a zoonotic parasitic disease caused by larvae of the Echinococcus granulosus sensu lato (s.l.) cluster. There is an urgent need to develop new drug targets and drug molecules to treat CE. Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a serine/threonine protein kinase consisting of α, ß, and γ subunits, plays a key role in the regulation of energy metabolism. However, the role of AMPK in regulating glucose metabolism in E. granulosus s.l. and its effects on parasite viability is unknown. In this study, we found that targeted knockdown of EgAMPKα or a small-molecule AMPK inhibitor inhibited the viability of E. granulosus sensu stricto (s.s.) and disrupted the ultrastructure. The results of in vivo experiments showed that the AMPK inhibitor had a significant therapeutic effect on E. granulosus s.s.-infected mice and resulted in the loss of cellular structures of the germinal layer. In addition, the inhibition of the EgAMPK/EgGLUT1 pathway limited glucose uptake and glucose metabolism functions in E. granulosus s.s.. Overall, our results suggest that EgAMPK can be a potential drug target for CE and that inhibition of EgAMPK activation is an effective strategy for the treatment of disease.


Subject(s)
Echinococcosis , Echinococcus granulosus , Parasites , Animals , Mice , AMP-Activated Protein Kinases , Echinococcosis/drug therapy , Echinococcosis/parasitology , Zoonoses/parasitology , Glucose , Genotype
15.
Rice (N Y) ; 17(1): 14, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351214

ABSTRACT

Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases for rice crops, significantly affecting crop yield and quality. During the infection process, M. oryzae secretes effector proteins that help in hijacking the host's immune responses to establish infection. However, little is known about the interaction between the effector protein AvrPik-D and the host protein Pikh, and how AvrPik-D increases disease severity to promote infection. In this study, we show that the M. oryzae effector AvrPik-D interacts with the zinc finger-type transcription factor WG7 in the nucleus and promotes its transcriptional activity. Genetic removal (knockout) of the gene WG7 in transgenic rice enhances resistance to M. oryzae and also results in an increased burst of reactive oxygen species after treatments with chitin. In addition, the hormone level of SA and JA, is increased and decreased respectively in WG7 KO plants, indicating that WG7 may negatively mediate resistance through salicylic acid pathway. Conversely, WG7 overexpression lines reduce resistance to M. oryzae. However, WG7 is not required for the Pikh-mediated resistance against rice blast. In conclusion, our results revealed that the M. oryzae effector AvrPik-D targets and promotes transcriptional activity of WG7 to suppress rice innate immunity to facilitate infection.

16.
Int J Biol Macromol ; 261(Pt 2): 129841, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309401

ABSTRACT

The transcription factor FgHtf1 is important for conidiogenesis in Fusarium graminearum and it positively regulates the expression of the sporulation-related gene FgCON7. However, the regulatory mechanism underlying its functions is still unclear. The present study intends to uncover the functional mechanism of FgHtf1 in relation to FgCon7 in F. graminearum. We demonstrated that FgCON7 serves as a target gene for FgHtf1. Interestingly, FgCon7 also binds the promoter region of FgHTF1 to negatively regulate its expression, thus forming a negative-feedback loop. We demonstrated that FgHtf1 and FgCon7 have functional redundancy in fungal development. FgCon7 localizes in the nucleus and has transcriptional activation activity. Deletion of FgCON7 significantly reduces conidia production. 4444 genes were regulated by FgCon7 in ChIP-Seq, and RNA-Seq revealed 4430 differentially expressed genes in FgCON7 deletion mutant, with CCAAT serving as a consensus binding motif of FgCon7 to the target genes. FgCon7 directly binds the promoter regions of FgMSN2, FgABAA, FgVEA and FgSMT3 genes and regulates their expression. These genes were found to be important for conidiogenesis. To our knowledge, this is the first study that unveiled the mutual regulatory functions of FgCON7 and FgHTF1 to form a negative-feedback loop, and how the loop mediates sporulation in F. graminearum.


Subject(s)
Fusarium , Transcription Factors , Feedback , Transcription Factors/genetics , Transcription Factors/metabolism , Fusarium/physiology , Gene Expression , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology
17.
Article in English | MEDLINE | ID: mdl-38324440

ABSTRACT

Recovering a user-special and controllable human model from a single RGB image is a nontrivial challenge. Existing methods usually generate static results with an image consistent subject's pose. Our work aspires to achieve pose-controllable human reconstruction from a single image by learning a dynamic (multi-pose) implicit field. We first construct a feature-embedded human model (FEHM) as a bridge to propagate image features to different pose spaces. Based on FEHM, we then encode three pose-decoupled features. Global image features represent user-specific shapes in images and replace widely used pixel-aligned ways to avoid unwanted shape-pose entanglement. Spatial color features propagate FEHM-embedded image cues into 3D pose space to provide spatial high-frequency guidance. Spatial geometry features improve reconstruction robustness by using the surface shape of the FEHM as the prior. Finally, new implicit functions are designed to predict the dynamic human implicit fields. For effective supervision, a realistic human avatar dataset, SimuSCAN, with 1000+ models is constructed using a low-cost hierarchical mesh registration method. Extensive experiments demonstrate that our method achieves the state-of-the-art reconstruction level.

18.
J Biophotonics ; 17(4): e202300357, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263544

ABSTRACT

Cystic echinococcosis (CE) is a grievous zoonotic parasitic disease. Currently, the traditional technology of screening CE is laborious and expensive, developing an innovative technology is urgent. In this study, we combined serum fluorescence spectroscopy with machine learning algorithms to develop an innovative screening technique to diagnose CE in sheep. Serum fluorescence spectra of Echinococcus granulosus sensu stricto-infected group (n = 63) and uninfected E. granulosus s.s. group (n = 60) under excitation at 405 nm were recorded. The linear support vector machine (Linear SVM), Quadratic SVM, medium radial basis function (RBF) SVM, K-nearest neighbor (KNN), and principal component analysis-linear discriminant analysis (PCA-LDA) were used to analyze the spectra data. The results showed that Quadratic SVM had the great classification capacity, its sensitivity, specificity, and accuracy were 85.0%, 93.8%, and 88.9%, respectively. In short, serum fluorescence spectroscopy combined with Quadratic SVM algorithm has great potential in the innovative diagnosis of CE in sheep.


Subject(s)
Echinococcosis , Animals , Sheep , Echinococcosis/diagnostic imaging , Echinococcosis/veterinary , Discriminant Analysis , Cluster Analysis , Algorithms , Support Vector Machine
19.
J Biophotonics ; 17(3): e202300376, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38163898

ABSTRACT

Early and accurate diagnosis of cystic echinococcosis (CE) with existing technologies is still challenging. Herein, we proposed a novel strategy based on the combination of label-free serum surface-enhanced Raman scattering (SERS) spectroscopy and machine learning for rapid and non-invasive diagnosis of early-stage CE. Specifically, by establishing early- and middle-stage mouse models, the corresponding CE-infected and normal control serum samples were collected, and silver nanoparticles (AgNPs) were utilized as the substrate to obtain SERS spectra. The early- and middle-stage discriminant models were developed using a support vector machine, with diagnostic accuracies of 91.7% and 95.7%, respectively. Furthermore, by analyzing the serum SERS spectra, some biomarkers that may be related to early CE were found, including purine metabolites and protein-related amide bands, which was consistent with other biochemical studies. Thus, our findings indicate that label-free serum SERS analysis is a potential early-stage CE detection method that is promising for clinical translation.


Subject(s)
Echinococcosis , Metal Nanoparticles , Animals , Mice , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Proteins , Echinococcosis/diagnostic imaging
20.
J Fungi (Basel) ; 10(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38248959

ABSTRACT

The Chinese flowering cherry (Cerasus serrulata), an ornamental tree with established medicinal values, is observed to suffer from leaf blight within Xi'an's greenbelts. This disease threatens both the plant's growth and its ornamental appeal. In this study, 26 isolates were obtained from plants with typical leaf blight, and only 3 isolates (XA-10, XA-15, and XA-18) were found to be pathogenic, causing similar symptoms on the leaves of the host plant. Based on sequence alignment, the ITS and LSU sequences of the three selected isolates were consistent, respectively. Following morphological and molecular analyses, the three selected isolates were further identified as Mortierella alpina. The three selected isolates exhibited similar morphological characteristics, including wavy colonies with dense, milky-white aerial mycelia on PDA medium. Therefore, isolate XA-10 was used as a representative strain for subsequent experiments. The representative strain XA-10 was found to exhibit optimal growth at a temperature of 30 °C and a pH of 7.0. Host range infection tests further revealed that the representative strain XA-10 could also inflict comparable disease symptoms on both the leaves and fruits of three different Rosaceae species (Prunus persica, Pyrus bretschneideri, and Prunus salicina). This study reveals, for the first time, the causative agent of leaf blight disease affecting the Chinese flowering cherry. This provides a deeper understanding of the biology and etiology of M. alpina. This study lays a solid foundation for the sustainable control and management of leaf blight disease in the Chinese flowering cherry.

SELECTION OF CITATIONS
SEARCH DETAIL
...