Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 309: 119778, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35841994

ABSTRACT

Understanding the formation mechanisms of secondary organic aerosols (SOA) is an arduous task in atmospheric chemistry. In November 2018, a sampling campaign was conducted at an urban background site in Hong Kong for characterization of secondary air pollution. A high-resolution time-of-flight aerosol mass spectrometer was used to monitor the compositions of non-refractory submicron particulate matters (NR-PM1), and multiple online instruments provided us with comprehensive auxiliary data. Organic aerosol (OA) constituted the largest fraction (43.8%) of NR-PM1, and 86.5% of the organics was contributed by the oxygenated OA (OOA, secondary components). Formation mechanisms of a dominant and more variable component of the less-oxidized OOA (labelled as LO-OOA1 in this study) and the more-oxidized OOA (MO-OOA) were explored. Based on the multilinear regression with molecular markers of OA (e.g., hydroxybenzonic acids and 2,3-dihydroxy-4-oxopentanoic acid), we presumed that anthropogenic organic compounds, especially aromatics, were the most likely precursors of LO-OOA1. MO-OOA correlated well with odd oxygen (Ox), and its concentration responded positively to the increase of liquid water content (LWC) in NR-PM1, indicating that the formation of MO-OOA involved photochemical oxidation and aqueous processes. It exhibited the best correlation with malic acid which can be formed through the oxidation of various precursors. Moreover, it was plausible that LO-OOA1 was further oxidized to MO-OOA through aqueous processes, as indicated by the consistent diurnal variations of MO-OOA to LO-OOA1 ratio and LWC. This study highlights the important roles of anthropogenic emissions and aqueous processes in SOA formation in coastal areas downwind of cities.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Organic Chemicals , Particulate Matter/analysis
2.
Sci Total Environ ; 830: 154774, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35339551

ABSTRACT

The adverse effects of acidic ultrafine particles (AUFPs) have been widely recognized in scientific communities. However, a handful of studies successfully acquired the concentrations of AUFPs in the atmosphere. To explore the AUFPs pollution, six extensive measurements were for the first time conducted in the roadside, urban and rural areas in Hong Kong, and the urban area in Shanghai between 2017 and 2020. The concentrations of AUFPs and UFPs, and the proportions of AUFPs in UFPs were obtained. The concentration of UFPs was the highest at the roadside site, followed by the urban site and the rural site, while the proportion of AUFPs in UFPs showed a contrary trend. The difference, on one hand, indicated the potential transformation of AUFPs from non-acidic UFPs during the transport and aging of air masses, and on the other hand, suggested the minor contribution of anthropogenic sources to the emission of AUFPs. In addition, the urban area in Hong Kong suffered from heavier pollution of UFPs and AUFPs than that in Shanghai. As for size distribution, the proportion of AUFPs in UFPs peaked in the size range of 35-50 nm and 50-75 nm in roadside and urban area, respectively. In rural area, the peak was observed in the size range of 5-10 nm, which might indicate the stimulation of new particle formation with the AUFPs as seeds. Furthermore, in the urban areas of Hong Kong and Shanghai, no significant difference was found for the geometric mean diameters of UFPs and AUFPs (p > 0.05). At last, the sulfuric acid proxy was positively correlated with the proportions of AUFPs in UFPs but not well correlated with the AUFPs levels. The results suggested the important roles of interaction between sulfuric acid vapor and non-acidic UFPs in AUFPs formation. Due to the significant reduction of sulfur dioxide in China during the last decade, the pollution of AUFPs in urban areas was alleviated.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , China , Cities , Environmental Monitoring/methods , Particle Size , Particulate Matter/analysis
3.
ACS Omega ; 6(25): 16280-16287, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34235298

ABSTRACT

Purposeful identification, selection, and collection of particles are of great significance in environmental research. Microscopy is the common technique used in previous studies of particle identification. However, the microscopic technique was intricate and time-consuming. To conduct an intensive analysis of targeted particles, there is a need for the development of a simple method that can differentially abandon the nontargeted particles and only retain the targeted particles on the surface of a substrate. In the study, three methods were attempted for differential removal of nontargeted nanoparticles on the surface, including air jet, nanobubble, and ultrasonic methods. Acidic particles were taken as the targeted particles, while nonacidic particles were regarded as nontargeted particles. The results showed that regardless of methods, acidic particles were retained on the surface due to the strong particle-surface interaction. As for nonacidic particles, air jet treatment and nanobubble treatment were not able to completely remove nonacidic particles from the surface with the removal efficiencies of 5.1 ± 3.4 and 89.3 ± 4.1%, respectively, while the nonacidic particles were entirely removed in the ultrasonic treatment. Ethanol rather than deionized (DI) water was the proper solution in the ultrasonic treatment to avoid contamination. In conclusion, ultrasonic by ethanol was fully efficient for differential removal of nonacidic particles on the surface. The principle of differential removal of particles is the differences in the particle-surface interaction force between nonacidic particles (i.e., physically attached particles) and acidic particles (i.e., chemically formed particles). Nonacidic particles are removed from the surface through cavitation to form bubbles in the gap between a nonacidic particle and the surface in the ultrasonic treatment. In contrast, the space between an acidic particle and the surface is filled by the reaction, and thus bubbles cannot enter the crevice to remove the acidic particle. The developed method is useful for aerosol research.

4.
Neurosci Biobehav Rev ; 128: 534-548, 2021 09.
Article in English | MEDLINE | ID: mdl-34216652

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral deficits including impairments in social communication, social interaction, and repetitive behaviors. Because the etiology of ASD is still largely unknown, there is no cure for ASD thus far. Although it has been established that genetic components play a vital role in ASD development, the influence of epigenetic regulation induced by environmental factors could also contribute to ASD susceptibility. Accumulated evidence has suggested that exposure to atmospheric particulate matter (PM) in polluted air could affect neurodevelopment, thus possibly leading to ASD. Particles with a size of 2.5 µm (PM2.5) or less have been shown to have negative effects on human health, and could be linked to ASD symptoms in children. This review summarizes evidence from clinical and animal studies to demonstrate the possible linkage between PM2.5 exposure and the incidence of ASD in children. An attempt was made to explore the possible mechanisms of this linkage, including changes of gene expression, oxidative stress and neuroinflammation induced by PM2.5 exposure.


Subject(s)
Autism Spectrum Disorder , Particulate Matter , Animals , Autism Spectrum Disorder/genetics , Child , Epigenesis, Genetic , Gene Expression , Humans , Oxidative Stress/genetics , Particulate Matter/toxicity , Risk Factors
5.
Indoor Air ; 31(5): 1340-1352, 2021 09.
Article in English | MEDLINE | ID: mdl-33772878

ABSTRACT

Due to the high health risks associated with indoor air pollutants and long-term exposure, indoor air quality has received increasing attention. In this study, we put emphasis on the molecular composition, source emissions, and chemical aging of air pollutants in a residence with designed activities mimicking ordinary Hong Kong homes. More than 150 air pollutants were detected at molecular level, 87 of which were quantified at a time resolution of not less than 1 hour. The indoor-to-outdoor ratios were higher than 1 for most of the primary air pollutants, due to emissions of indoor activities and indoor backgrounds (especially for aldehydes). In contrast, many secondary air pollutants exhibited higher concentrations in outdoor air. Painting ranked first in aldehyde emissions, which also caused great enhancement of aromatics. Incense burning had the highest emissions of particle-phase organics, with vanillic acid and syringic acid as markers. The other noteworthy fingerprints enabled by online measurements included linoleic acid, cholesterol, and oleic acid for cooking, 2,5-dimethylfuran, stigmasterol, iso-/anteiso-alkanes, and fructose isomers for smoking, C28 -C34 even n-alkanes for candle burning, and monoterpenes for the use of air freshener, cleaning agents, and camphor oil. We showed clear evidence of chemical aging of cooking emissions, giving a hint of indoor heterogeneous chemistry. This study highlights the value of organic molecules measured at high time resolutions in enhancing our knowledge on indoor air quality.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/statistics & numerical data , Environmental Monitoring , Cooking , Hong Kong , Humans , Particle Size , Particulate Matter , Vehicle Emissions
6.
Environ Sci Technol ; 54(18): 11058-11069, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32805105

ABSTRACT

Reducing the amount of organic aerosol (OA) is crucial to mitigation of particulate pollution in China. We present time and air-origin dependent variations of OA markers and source contributions at a regionally urban background site in South China. The continental air contained primary OA markers indicative of source categories, such as levoglucosan, fatty acids, and oleic acid. Secondary OA (SOA) markers derived from isoprene and monoterpenes also exhibited higher concentrations in continental air, due to more emissions of their precursors from terrestrial ecosystems and facilitation of anthropogenic sulfate for monoterpenes SOA. The marine air and continental-marine mixed air had more abundant hydroxyl dicarboxylic acids (OHDCA), with anthropogenic unsaturated organics as potential precursors. However, OHDCA formation in continental air was likely attributable to both biogenic and anthropogenic precursors. The production efficiency of OHDCA was highest in marine air, related to the presence of sulfur dioxide and/or organic precursors in ship emissions. Regional biomass burning (BB) was identified as the largest contributor of OA in continental air, with contributions fluctuating from 8% to 74%. In contrast, anthropogenic SOA accounted for the highest fraction of OA in marine (37 ± 4%) and mixed air (31 ± 3%), overriding the contributions from BB. This study demonstrates the utility of molecular markers for discerning OA pollution sources in the offshore marine atmosphere, where continental and marine air pollutants interact and atmospheric oxidative capacity may be enhanced.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Ecosystem , Environmental Monitoring , Particulate Matter/analysis
7.
Environ Sci Process Impacts ; 21(6): 916-929, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31089656

ABSTRACT

Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O3 has increased substantially in China. O3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O3 and its precursors (i.e. O3 formation regime), built upon the previous reviews of the spatial-temporal variations of O3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O3 pollution, followed by implications for the control of O3 pollution. This literature review indicates that O3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOx-limited regime dominates rural/remote areas. From summer to winter, the O3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12th Five-Year-Plan. However, after the 12th Five-Year-Plan, successful reduction of NOx slowed down this trend. Further effective control of VOCs is expected to achieve sustained O3 attainment in the future. To timely solve the current O3 pollution problem, precise control of O3 precursors is proposed, together with the joint prevention and control of regional air pollution.


Subject(s)
Air Pollutants/chemistry , Ozone/chemistry , Air Pollution/prevention & control , China , Nitrogen Oxides/chemistry , Seasons , Volatile Organic Compounds/chemistry
8.
Environ Sci Technol ; 53(6): 3001-3009, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30790521

ABSTRACT

Motor vehicle emissions are an important but poorly constrained source of secondary organic aerosol (SOA). Here, we investigated in situ SOA formation from urban roadside air in Hong Kong during winter time using an oxidation flow reactor (OFR), with equivalent atmospheric oxidation ranging from several hours to several days. The campaign-average mass enhancement of OA, nitrate, sulfate, and ammonium upon OFR aging was 7.0, 7.2, 0.8, and 2.6 µg m-3, respectively. To investigate the sources of SOA formation potential, we performed multilinear regression analysis between measured peak SOA concentrations from OFR and the concentrations of toluene that represent motor vehicle emissions and cooking OA from positive matrix factorization (PMF) analysis of ambient OA. Traffic-related SOA precursors contributed 92.3%, 92.4%, and 83.1% to the total SOA formation potential during morning rush hours, noon and early afternoon, and evening meal time, respectively. The SOA production factor (PF) was approximately 5.2 times of primary OA (POA) emission factor (EF) and the secondary particulate matter (PM) PF was approximately 2.6 times of primary particles EF. This study highlights the potential benefit of reducing secondary PM production from motor vehicle emissions in mitigating PM pollutions.


Subject(s)
Air Pollutants , Aerosols , Hong Kong , Particulate Matter , Vehicle Emissions
SELECTION OF CITATIONS
SEARCH DETAIL
...