Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(20): 10705-10717, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38736288

ABSTRACT

The intricate development of liquid-crystal lubricants necessitates the timely and accurate prediction of their tribological performance in different environments and an assessment of the importance of relevant parameters. In this study, a classification model using Gaussian noise extreme gradient boosting (GNBoost) to predict tribological performance is proposed. Three additives, polysorbate-85, polysorbate-80, and graphene oxide, were selected to fabricate liquid-crystal lubricants. The coefficients of friction of these lubricants were tested in the rotational mode using a universal mechanical tester. A model was designed to predict the coefficient of friction through data augmentation of the initial data. The model parameters were optimized using particle swarm optimization techniques. This study provides an effective example for lubricant performance evaluation and formulation optimization.

2.
Adv Mater ; 34(37): e2205344, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35901232

ABSTRACT

The ubiquitous nature of atmospheric moisture makes it a significant water resource available at any geographical location. Atmospheric water harvesting (AWH) technology, which extracts moisture from the ambient air to generate clean water, is a promising strategy to realize decentralized water production. The high water uptake by salt-based sorbents makes them attractive for AWH, especially in arid environments. However, they often have relatively high desorption heat, rendering water release an energy-intensive process. A  LiCl-incorporating polyacrylamide hydrogel (PAM-LiCl) capable of effective moisture harvesting from arid environments is proposed. The interactions between the hydrophilic hydrogel network and the captured water generate more free and weakly bonded water, significantly lowering the desorption heat compared with conventional neat salt sorbents. Benefiting from the affinity for swelling of the polymer backbones, the developed PAM-LiCl achieves a high water uptake of ≈1.1 g g-1 at 20% RH with fast sorption kinetics of ≈0.008 g g-1  min-1  and further demonstrates a daily water yield up to ≈7 g g-1 at this condition. These findings provide a new pathway for the synthesis of materials with efficient water absorption/desorption properties, to reach energy-efficient water release for AWH in arid climates.

3.
Nat Commun ; 13(1): 2761, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589809

ABSTRACT

Extracting ubiquitous atmospheric water is a sustainable strategy to enable decentralized access to safely managed water but remains challenging due to its limited daily water output at low relative humidity (≤30% RH). Here, we report super hygroscopic polymer films (SHPFs) composed of renewable biomasses and hygroscopic salt, exhibiting high water uptake of 0.64-0.96 g g-1 at 15-30% RH. Konjac glucomannan facilitates the highly porous structures with enlarged air-polymer interfaces for active moisture capture and water vapor transport. Thermoresponsive hydroxypropyl cellulose enables phase transition at a low temperature to assist the release of collected water via hydrophobic interactions. With rapid sorption-desorption kinetics, SHPFs operate 14-24 cycles per day in arid environments, equivalent to a water yield of 5.8-13.3 L kg-1. Synthesized via a simple casting method using sustainable raw materials, SHPFs highlight the potential for low-cost and scalable atmospheric water harvesting technology to mitigate the global water crisis.


Subject(s)
Polymers , Steam , Kinetics , Porosity , Wettability
4.
Front Chem ; 10: 851264, 2022.
Article in English | MEDLINE | ID: mdl-35392420

ABSTRACT

Solid-state electrolyte (SSE), as the core component of solid-state batteries, plays a critical role in the performance of the batteries. Currently, the development of SSE is still hindered by its high price, low ionic conductivity, and poor interface stability. In this work, we report the tailored synthesis of a high ionic conductive and low cost sulfide SSE for all-solid-state lithium batteries. The Li10.35Si1.35P1.65S12 with favorable tetragonal structure was synthesis by increasing the concentration of Si4+, which shows an ionic conductivity of 4.28 × 10-3 S cm-1 and a wide electrochemical stability window of up to 5 V. By further modifying the composition of the electrolyte via ionic doping, the ionic conductivity of Li10.35Si1.35P1.65S12 can be further enhanced. Among them, the 1% Co4+-doped Li10.35Si1.35P1.65S12 shows the highest ionic conductivity of 6.91 × 10-3 S cm-1, 40% higher than the undoped one. This can be attributed to the broadened MS4 - tetrahedrons and increased Li+ concentration. As a demonstration, an all-solid-state Li metal battery was assembled using TiS2 as the cathode and 1% Co4+-doped Li10.35Si1.35P1.65S12 as the electrolyte, showing capacity retention of 72% at the 110th cycle. This strategy is simple and can be easily extended for the construction of other high-performance sulfide SSEs.

5.
Adv Mater ; 34(12): e2110079, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35122451

ABSTRACT

Atmospheric water harvesting (AWH) is emerging as a promising strategy to produce fresh water from abundant airborne moisture to overcome the global clean water shortage. The ubiquitous moisture resources allow AWH to be free from geographical restrictions and potentially realize decentralized applications, making it a vital parallel or supplementary freshwater production approach to liquid water resource-based technologies. Recent advances in regulating chemical properties and micro/nanostructures of moisture-harvesting materials have demonstrated new possibilities to promote enhanced device performance and new understandings. This perspective aims to provide a timely overview on the state-of-the-art materials design and how they serve as the active components in AWH. First, the key processes of AWH, including vapor condensation, droplet nucleation, growth, and departure are outlined, and the desired material properties based on the fundamental mechanisms are discussed. Then, how tailoring materials-water interactions at the molecular level play a vital role in realizing high water uptake and low energy consumption is shown. Last, the challenges and outlook on further improving AWH from material designs and system engineering aspects are highlighted.

6.
Adv Mater ; 34(12): e2110548, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35034412

ABSTRACT

Water-soluble volatile organic compounds (VOCs) are widely spread in the natural hydrological cycle, contaminating potential water sources, and leading to unexpected ecological hazards. However, water-purification technologies toward VOCs are energy-intensive and present unsatisfactory purity of the obtained water. The fundamental challenge is to differentiate the motion of water and VOC molecules by separators. Here, the concept of a super water-extracting gel (SWEG) for VOC-management and water purification via direct solar distillation is proposed. The strong hydrogen bonding effect in the hypercrosslinked hydrophilic polymeric networks enables the SWEG to extract water from VOC-containing water, which rejects the VOC solutes while allowing water through for interfacial evaporation. The obtained SWEG achieves a VOCs removal ratio up to 99.99% by solar distillation under 1 sun. A solar water-purification system is also demonstrated to produce clean water, which surpasses other competitive technologies based on electricity.

7.
Angew Chem Int Ed Engl ; 61(13): e202200271, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35089612

ABSTRACT

Atmospheric water harvesting (AWH) is regarded as one of the promising strategies for freshwater production desirable to provide sustainable water for landlocked and arid regions. Hygroscopic materials have attracted widespread attention because of their water harvesting performance. However, the introduction of many inorganic salts often leads to aggregation and leakage issues in practical use. Here, polyzwitterionic hydrogels are developed as an effective AWH material platform. Via anti-polyelectrolyte effects, the hygroscopic salt coordinated with polymer chains could capture moisture and enhance the swelling property, leading to a strong moisture sorption capacity. The hydrogel shows superior AWH performance (0.62 g g-1 , 120 minutes for equilibrium at 30 % relative humidity) and produces 5.87 L kg-1 freshwater per day. It is anticipated that the polyzwitterionic hydrogels with unique salt-responsive properties could provide new insights into the design and synthesis of next-generation AWH materials.


Subject(s)
Hydrogels , Water , Polyelectrolytes , Polymers , Sodium Chloride , Wettability
8.
Nanotechnology ; 31(36): 364003, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32470954

ABSTRACT

The broad application of metal-air batteries and fuel cells have been greatly limited due to their slow kinetics of oxygen electrodes involving the oxygen reduction reaction (ORR), and therefore the development of high-efficient, low-cost and high-reserve ORR electrocatalysts is of great significance. Herein, a hypersaline-protected pyrolysis strategy is presented for preparing 3D honeycombed cobalt, nitrogen co-doped carbon nanosheets (Co/N-CNS) by using eco-friendly biomass as a carbon and nitrogen source. During the hypersaline-protected pyrolysis, the pyridinic nitrogen-rich biomass facilitates the formation of highly active Co/N active sites among the resultant Co/N-CNS, while the templating-washing-drying cyclic utilization of salts creates honeycombed pore structures among the Co/N-CNS. Due to the structural features of honeycombed pores and uniform distributed active sites, the Co/N-CNS catalyst offers excellent ORR activity, high durability and methanol-tolerant performance in an alkaline electrolyte. As a demonstration, a primary Zn-air battery using the Co/N-CNS cathode delivers a high power density and excellent operating stability beyond that of commercial Pt/C cathode.

9.
Adv Mater ; 32(11): e1907061, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32022974

ABSTRACT

Solar vapor generation has presented great potential for wastewater treatment and seawater desalination with high energy conversion and utilization efficiency. However, technology gaps still exist for achieving a fast evaporation rate and high quality of water combined with low-cost deployment to provide a sustainable solar-driven water purification system. In this study, a naturally abundant biomass, konjac glucomannan, together with simple-to-fabricate iron-based metal-organic framework-derived photothermal nanoparticles is introduced into the polyvinyl alcohol networks, building hybrid hydrogel evaporators in a cost-effective fashion ($14.9 m-2 of total materials cost). With advantageous features of adequate water transport, effective water activation, and anti-salt-fouling function, the hybrid hydrogel evaporators achieve a high evaporation rate under one sun (1 kW m-2 ) at 3.2 kg m-2 h-1 out of wastewater with wide degrees of acidity and alkalinity (pH 2-14) and high-salinity seawater (up to 330 g kg-1 ). More notably, heavy metal ions are removed effectively by forming hydrogen and chelating bonds with excess hydroxyl groups in the hydrogel. It is anticipated that this study offers new possibilities for a deployable, cost-effective solar water purification system with assured water quality, especially for economically stressed communities.

10.
Nat Commun ; 11(1): 62, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31911636

ABSTRACT

The development of energy storage devices that can endure large and complex deformations is central to emerging wearable electronics. Hydrogels made from conducting polymers give rise to a promising integration of high conductivity and versatility in processing. However, the emergence of conducting polymer hydrogels with a desirable network structure cannot be readily achieved using conventional polymerization methods. Here we present a cryopolymerization strategy for preparing an intrinsically stretchable, compressible and bendable anisotropic polyvinyl alcohol/polyaniline hydrogel with a complete recovery of 100% stretching strain, 50% compressing strain and fully bending. Due to its high mechanical strength, superelastic properties and bi-continuous phase structure, the as-obtained anisotropic polyvinyl alcohol/polyaniline hydrogel can work as a stretching/compressing/bending electrode, maintaining its stable output under complex deformations for an all-solid-state supercapacitor. In particular, it achieves an extremely high energy density of 27.5 W h kg-1, which is among that of state-of-the-art stretchable supercapacitors.

11.
ACS Appl Mater Interfaces ; 11(3): 3372-3381, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30586290

ABSTRACT

Water electrolysis is a promising approach for green and large-scale hydrogen production; however, there are still challenges for developing efficient and stable bifunctional electrocatalysts toward the hydrogen and oxygen evolution reactions. Herein, zeolitic imidazolate framework-67 was used as the precursor for the construction of CoSe2 nanoparticles trapped in N-doped carbon (NC) polyhedra. Among as-obtained CoSe2-NC hybrid, highly active CoSe2 nanoparticles in sizes of 10-20 nm are encapsulated in N-doped few-layer carbon shell, avoiding their easy aggregations of CoSe2 nanoparticles as well as enhancing the long-term stability. The unique nanostructured CoSe2-NC hybrid with a hierarchical porosity and 3D conductive framework thus fully exerts outstanding bifunctional catalytic activity of CoSe2 centers. As a result, the CoSe2-NC hybrid as bifunctional catalysts for overall water splitting delivers a high current density of 50 mA cm-2 with an applied voltage of ∼1.73 V in an alkaline electrolyte, with a promising stability over 50 000 s.

12.
Nanoscale ; 9(42): 16313-16320, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29048090

ABSTRACT

Tailoring the size and controlling the morphology of particular nano-architectures are considered as two promising strategies to improve the catalytic performance of metal nanocrystals towards hydrogen evolution reactions (HERs). Herein, mesoporous cobalt phosphide nanotubes (CoP-NTs) with a three-dimensional network structure have been obtained through a facile and efficient electrospinning technique combined with thermal stabilization and phosphorization treatments. The thermal stabilization process has been demonstrated to play a key role in the morphological tailoring of Co3O4 nanotubes (Co3O4-NTs). As a result, the CoP-NTs show one-dimensional hollow tubular architecture instead of forming a worm-like tubular CoP structure (W-CoP-NTs) or severely aggregated CoP powder (CoP-NPs) which originate from the Co3O4 nanotubes without thermal stabilization treatment and Co3O4 nanoparticles, respectively. Satisfyingly, under an optimized phosphorization degree, the CoP-NT electrode exhibits a low onset overpotential of 53 mV with a low Tafel slope of 50 mV dec-1 during the HER process. Furthermore, the CoP-NT electrode is capable of driving a large cathodic current density of 10 mA cm-2 at an overpotential of 152 mV, which is much lower than those of its contrast samples, i.e. CoP-NPs (211 mV) and W-CoP-NTs (230 mV). Therefore, this work provides a feasible and general strategy for constructing three-dimensionally organized mesoporous non-noble metal phosphide nanotubes as promising alternative high-performance electrocatalysts for the commercial platinum ones.

13.
Sci Rep ; 6: 31541, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27511271

ABSTRACT

Three-dimensional (3D) all-carbon nanofibrous aerogels with good structural stability and elasticity are highly desirable in flexible energy storage/conversion devices. Hence, an efficient surface-induced co-assembly strategy is reported for the novel design and reconstruction of electrospun nanofibers into graphene/carbon nanofiber (CNF) composite aerogels (GCA) with hierarchical structures utilizing graphene flakes as cross-linkers. The as-obtained GCA monoliths possess interconnected macropores and integrated conductive networks, which exhibit high elasticity and great structural robustness. Benefitting from the largely increased surface area and charge-transfer efficiency derived from the multi-form firm interconnections (including pillaring, bridging and jointing) between graphene flakes and CNF ribs, GCA not only reveals prominent capacitive performance as supercapacitor electrode, but also shows excellent hydrogen evolution reaction activity in both acidic and alkaline solutions as a 3D template for decoration of few-layered MoSe2 nanosheets, holding great potentials for energy-related applications.

14.
Small ; 12(24): 3235-44, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27135301

ABSTRACT

The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogen-doped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets. The as-obtained CBC-N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g(-1) at a discharge current density of 1 A g(-1) , based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g(-1) and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC-N@LDH composites as positive electrode materials and CBC-N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC-N@LDH composites and 3D nitrogen-doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg(-1) at the power density of 800.2 W kg(-1) . Therefore, this work presents a novel protocol for the large-scale production of biomass-derived high-performance electrode materials in practical supercapacitor applications.


Subject(s)
Carbon/chemistry , Cobalt/chemistry , Hydroxides/chemistry , Nickel/chemistry , Nitrogen/chemistry , Biomass , Electrodes
15.
ACS Appl Mater Interfaces ; 8(11): 7077-85, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26927526

ABSTRACT

Recent studies have proven that newly emerging two-dimensional molybdenum diselenide (MoSe2) is a promising noble-metal-free electrocatalyst for hydrogen evolution reaction (HER). Increasing the exposures of the active edges of MoSe2 nanostructures is a key issue to fully realize the excellent electrochemical properties of MoSe2. In this work, a few-layered MoSe2/carbon fiber aerogel (CFA) hybrids have been facilely obtained through the combination of high-temperature carbonization and one-pot solvothermal reaction. CFA derived from cotton wool is used as a three-dimensional conductive network for construction of hierarchical MoSe2/CFA hybrids, where few-layered MoSe2 nanosheets are uniformly and perpendicularly decorated on the surfaces of CFA. In the designed and prepared hybrids, CFA effectively increases the exposures of the active edges of MoSe2 nanosheets as well as provides reduced lengths for both electron transportation and ion diffusion. Therefore, the obtained optimal MoSe2/CFA hybrid exhibits excellent electrochemical activity as HER electrocatalyst with a small onset potential of -0.104 V vs reversible hydrogen electrode and a small Tafel slope of 62 mV per decade, showing its great potential as a next-generation Pt-free electrocatalyst for HER.

16.
Nanoscale ; 7(44): 18595-602, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26490444

ABSTRACT

Exploration of high-efficiency Pt-free electrochemical catalysts for hydrogen evolution reaction (HER) is considered as a great challenge for the development of sustainable and carbon dioxide free energy conversion systems. In this work, a unique hierarchical nanostructure of few-layered MoSe2 nanosheets perpendicularly grown on carbon nanotubes (CNTs) is synthesized through a one-step solvothermal reaction. This rationally designed architecture based on a highly conductive CNT substrate possesses fully exposed active edges and open structures for fast ion/electron transfer, thus leading to remarkable HER activity with a low onset potential of -0.07 V vs. RHE (reversible hydrogen electrode), a small Tafel slope of 58 mV per decade and excellent long-cycle stability. Therefore, this noble-metal-free and highly efficient catalyst enables prospective applications for industrial, renewable hydrogen production.

17.
Chemistry ; 21(28): 10100-8, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26061603

ABSTRACT

Increasing energy demands and worsening environmental issues have stimulated intense research on alternative energy storage and conversion systems including supercapacitors and fuel cells. Here, a rationally designed hierarchical structure of ZnCo2 O4 @NiCo2 O4 core-sheath nanowires synthesized through facile electrospinning combined with a simple co-precipitation method is proposed. The obtained core-sheath nanostructures consisting of mesoporous ZnCo2 O4 nanowires as the core and uniformly distributed ultrathin NiCo2 O4 nanosheets as the sheath, exhibit excellent electrochemical activity as bifunctional materials for supercapacitor electrodes and oxygen reduction reaction (ORR) catalysts. Compared with the single component of either ZnCo2 O4 nanowires or NiCo2 O4 nanosheets, the hierarchical ZnCo2 O4 @NiCo2 O4 core-sheath nanowires demonstrate higher specific capacitance of 1476 F g(-1) (1 A g(-1) ) and better rate capability of 942 F g(-1) (20 A g(-1) ), while maintaining 98.9 % capacity after 2000 cycles at 10 A g(-1) . Meanwhile, the ZnCo2 O4 @NiCo2 O4 core-sheath nanowires reveal comparable catalytic activity but superior stability and methanol tolerance over Pt/C as ORR catalyst. The impressive performance may originate from the unique hierarchical core-sheath structures that greatly facilitate enhanced reactivity, and faster ion and electron transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...