Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 14(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683847

ABSTRACT

During the combustion of polymeric materials, plenty of heat, smoke, and toxic gases are produced that may cause serious harm to human health. Although the flame retardants such as halogen- and phosphorus-containing compounds can inhibit combustion, they cannot effectively reduce the release of toxic fumes. Zinc hydroxystannate (ZHS, ZnSn(OH)6) is an environmentally friendly flame retardant that has attracted extensive interest because of its high efficiency, safety, and smoke suppression properties. However, using ZHS itself may not contribute to the optimal flame retardant effect, which is commonly combined with other flame retardants to achieve more significant efficiency. Few articles systematically review the recent development of ZHS in the fire safety field. This review aims to deliver an insight towards further direction and advancement of ZHS in flame retardant and smoke suppression for multiple polymer blends. In addition, the fire retarded and smoke suppression mechanism of ZHS will be demonstrated and discussed in depth.

2.
Molecules ; 26(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669144

ABSTRACT

A broadband visible light-absorbing [70]fullerene-BODIPY-triphenylamine triad (C70-B-T) has been synthesized and applied as a heavy atom-free organic triplet photosensitizer for photooxidation. By attaching two triphenylmethyl amine units (TPAs) to the π-core of BODIPY via ethynyl linkers, the absorption range of the antenna is extended to 700 nm with a peak at 600 nm. Thus, the absorption spectrum of C70-B-T almost covers the entire UV-visible region (270-700 nm). The photophysical processes are investigated by means of steady-state and transient spectroscopies. Upon photoexcitation at 339 nm, an efficient energy transfer (ET) from TPA to BODIPY occurs both in C70-B-T and B-T, resulting in the appearance of the BODIPY emission at 664 nm. Direct or indirect (via ET) excitation of the BODIPY-part of C70-B-T is followed by photoinduced ET from the antenna to C70, thus the singlet excited state of C70 (1C70*) is populated. Subsequently, the triplet excited state of C70 (3C70*) is produced via the intrinsic intersystem crossing of C70. The photooxidation ability of C70-B-T was studied using 1,5-dihydroxy naphthalene (DHN) as a chemical sensor. The photooxidation efficiency of C70-B-T is higher than that of the individual components of C70-1 and B-T, and even higher than that of methylene blue (MB). The photooxidation rate constant of C70-B-T is 1.47 and 1.51 times as that of C70-1 and MB, respectively. The results indicate that the C70-antenna systems can be used as another structure motif for a heavy atom-free organic triplet photosensitizer.


Subject(s)
Aniline Compounds/chemistry , Boron Compounds/chemistry , Fullerenes/chemistry , Light , Photosensitizing Agents/chemistry , Molecular Structure , Oxidation-Reduction , Photochemical Processes , Photosensitizing Agents/chemical synthesis
3.
J Hazard Mater ; 381: 120952, 2020 01 05.
Article in English | MEDLINE | ID: mdl-31400715

ABSTRACT

MXene/chitosan nanocoating for flexible polyurethane foam (PUF) was prepared via layer-by-layer (LbL) approach. MXene (Ti3C2) ultra-thin nanosheets were obtained through etching process of Ti3AlC2 followed by exfoliation. The deposition of MXene/chitosan nanocoating was conducted by alternatingly immersing the PUF into a chitosan solution and a Ti3C2 aqueous dispersion, which resulted in different number of bilayers (BL) ranging from 2, 5 and 8. Owing to the utilization of ultra-thin Ti3C2 nanosheets, the weight gain was only 6.9% for 8 BL coating of PUF, which minimised the unfavourable impact on the intrinsic properties of PUF. The Ti3C2/chitosan coating significantly reduced the flammability and smoke releases of PUF. Compared with unmodified PUF, the 8 BL coating reduced the peak heat release rate by 57.2%, alongside with a 65.5% reduction in the total heat release. The 8 BL coating also showed outstanding smoke suppression ability with total smoke release decreased by 71.1% and peak smoke production rate reduced by 60.3%, respectively. The peak production of CO and CO2 gases also decreased by 70.8% and 68.6%, respectively. Furthermore, an outstanding char formation performance of 37.2 wt.% residue was obtained for 8 BL coated PUF, indicating the excellent barrier and carbonization property of the hybrid coating.


Subject(s)
Aluminum/chemistry , Chitosan/chemistry , Flame Retardants , Polyurethanes/chemistry , Titanium/chemistry , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Smoke/analysis
4.
ACS Appl Mater Interfaces ; 11(43): 40512-40523, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31577120

ABSTRACT

Polyimide (PI) aerogels have attracted great attention owing to their low density and excellent thermal stability. However, hydrophobic surface modification is required for PI aerogels to improve their ability in oil/water separation due to their amphiphilic characteristic. Two-dimensional MXenes (transition metal carbides/nitrides) can be utilized as nanofillers to enhance the properties of polymers because of their unique layered structure and versatile interface chemistry. Herein, the robust, lightweight, and hydrophobic PI/MXene three-dimensional architectures were fabricated via freeze-drying of polyamide acid/MXene suspensions and thermal imidization. Polyamide acid was synthesized using N-N-dimethylacetamide and 4,4'-oxydianiline. MXene (Ti3C2Tx) dispersion was obtained via the etching of Ti3AlC2 and ultrasonic exfoliation. Taking advantage of the strong interaction between PI chains and MXene nanosheets, the interconnected, highly porous, and hydrophobic PI/MXene aerogels with low density were fabricated, resulting in the improved compressive performance, remarkable oil absorption capacity, and efficient separation of oil and water. For the PI/MXene-3 aerogel (weight ratio, 5.2:1) without any surface modification, the water contact angle was 119° with a density of 23 mg/cm3. This aerogel can completely recover to its original height after 50 compression-release cycles, exhibiting superelasticity and exceptional fatigue-resistant ability. It also showed high absorption capacities to various organic liquids ranging from approximately 18 to 58 times of their own weight. This hybrid aerogel can rapidly separate the chloroform, soybean oil, and liquid paraffin from the water-oil system. The thermally stable hybrid aerogel also exhibited excellent fire safety properties and outstanding reusability under an extreme environment.

5.
Polymers (Basel) ; 11(6)2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31163659

ABSTRACT

Fabricating high-performance MXene-based polymer nanocomposites is a huge challenge because of the poor dispersion and interfacial interaction of MXene nanosheets in the polymer matrix. To address the issue, MXene nanosheets were successfully exfoliated and subsequently modified by long-chain cationic agents with different chain lengths, i.e., decyltrimethylammonium bromide (DTAB), octadecyltrimethylammonium bromide (OTAB), and dihexadecyldimethylammonium bromide (DDAB). With the long-chain groups on their surface, modified Ti3C2 (MXene) nanosheets were well dispersed in N,N-dimethylformamide (DMF), resulting in the formation of uniform dispersion and strong interfacial adhesion within a polystyrene (PS) matrix. The thermal stability properties of cationic modified Ti3C2/PS nanocomposites were improved considerably with the temperatures at 5% weight loss increasing by 20 °C for DTAB-Ti3C2/PS, 25 °C for OTAB-Ti3C2/PS and 23 °C for DDAB-Ti3C2/PS, respectively. The modified MXene nanosheets also enhanced the flame-retardant properties of PS. Compared to neat PS, the peak heat release rate (PHRR) was reduced by approximately 26.4%, 21.5% and 20.8% for PS/OTAB-Ti3C2, PS/DDAB-Ti3C2 and PS/DTAB-Ti3C2, respectively. Significant reductions in CO and CO2 productions were also obtained in the cone calorimeter test and generally lower pyrolysis volatile products were recorded by PS/OTAB-Ti3C2 compared to pristine PS. These property enhancements of PS nanocomposites are attributed to the superior dispersion, catalytic and barrier effects of Ti3C2 nanosheets.

6.
J Hazard Mater ; 374: 110-119, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30981952

ABSTRACT

Thermoplastic polyurethane (TPU) has broad applications as lightweight materials due to its multiple advantages and unique properties. Nevertheless, toxicity emission under fire conditions remains a major concern, particularly in building fire scenarios. To circumvent the problem, it is imperative that an effective flame retardant is sought to suppress the flame and release of combustion/smoke products whilst maintaining the favorable material properties of TPU. In the current work, a simple method is proposed for the preparation and utilization of cetyltrimethyl ammonium bromide (CTAB) and tetrabutyl phosphine chloride (TBPC) modified Ti3C2 (MXene) ultra-thin nanosheets. During the cone calorimeter tests, significant reduction in peak heat release rate (51.2% and 52.2%), peak smoke production rate (57.1% and 57.4%), peak CO production (39.4% and 41.6%) and peak CO2 production (49.7% and 51.7%) were recorded by the mere introduction of 2 wt.% CTAB-Ti3C2 and TBPC-Ti3C2 to TPU. These superior fire safety properties resulting from the significant reduction of the fire, smoke and toxicity hazards are attributed to the excellent dispersion, catalytic and barrier effect of Ti3C2 ultra-thin nanosheets in TPU. Future applications of exfoliated MXene nanosheets as flame retardant appear to be very promising.

7.
ACS Appl Mater Interfaces ; 10(46): 40032-40043, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30379530

ABSTRACT

A novel three-dimensional (3D) epoxy/graphene nanosheet/hydroxylated boron nitride (EP/GNS/BNOH) hybrid aerogel was successfully fabricated in this study. This was uniquely achieved by constructing a well-defined and interconnected 3D network architecture. The manufacturing process of EP/GNS/BNOH involved a simple one-pot hydrothermal strategy, followed by the treatment of freeze-drying and high-temperature curing. In comparison with EP/GNS-3, EP/GNS/BNOH-3 demonstrated improvement of 97% for compressive strength at 70% strain. Through compression tests, fracture occurred for EP/GNS-3 at ninth compression cycles, whereas EP/GNS/BNOH-3 retained its original form after twenty compression cycles, with a residual height of 97% (i.e., only 3% reduction). By the addition of BNOH in the polymer matrix, the dynamic heat transfer and dissipation rates of EP/GNS/BNOH aerogels were also considerably reduced, indicating that the aerogel with BNOH additive possessed excellent thermal insulation properties. Thermogravimetric analysis results revealed that the thermal stabilities of EP/GNS and EP/GNS/BNOH aerogels were improved with increasing loading of EP, and EP/GNS/BNOH aerogels exhibited a better thermal stability at high temperatures. Through the elevated levels attained in the compressive strength, superelasticity, and thermal resistance, EP/GNS/BNOH aerogels has the great potential of being a very effective thermal insulation material to be utilized across a board range of applications in building, automotive, spacecraft, and mechanical systems.

8.
Nanomaterials (Basel) ; 8(2)2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29373531

ABSTRACT

High-performance poly(1,4-butylene terephthalate) (PBT) nanocomposites have been developed via the consideration of phosphorus-containing agents and amino-carbon nanotube (A-CNT). One-pot functionalization method has been adopted to prepare functionalized CNTs via the reaction between A-CNT and different oxidation state phosphorus-containing agents, including chlorodiphenylphosphine (DPP-Cl), diphenylphosphinic chloride (DPP(O)-Cl), and diphenyl phosphoryl chloride (DPP(O3)-Cl). These functionalized CNTs, DPP(Ox)-A-CNTs (x = 0, 1, 3), were, respectively, mixed with PBT to obtain the CNT-based polymer nanocomposites through a melt blending method. Scanning electron microscope observations demonstrated that DPP(Ox)-A-CNT nanoadditives were homogeneously distributed within PBT matrix compared to A-CNT. The incorporation of DPP(Ox)-A-CNT improved the thermal stability of PBT. Moreover, PBT/DPP(O3)-A-CNT showed the highest crystallization temperature and tensile strength, due to the superior dispersion and interfacial interactions between DPP(O3)-A-CNT and PBT. PBT/DPP(O)-A-CNT exhibited the best flame retardancy resulting from the excellent carbonization effect. The radicals generated from decomposed polymer were effectively trapped by DPP(O)-A-CNT, leading to the reduction of heat release rate, smoke production rate, carbon dioxide and carbon monoxide release during cone calorimeter tests.

9.
ACS Omega ; 3(11): 14942-14952, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458160

ABSTRACT

In this article, the polyaniline (PANI)/thermal-exfoliated hexagonal boron nitride (BNO) hierarchical structure (PANI-BNO) was constructed via in situ deposition to improve the dispersion and interfacial adhesion of boron nitride in multi-aromatic polystyrene (PS) and polar thermoplastic polyurethane (TPU). Because of the conjugated structure and polar groups in PANI, the uniform dispersion and strong interfacial adhesion between PANI-BNO and PS and TPU were achieved. Thermogravimetric analysis results showed that the incorporation of PANI-BNO enhanced the thermal stability of PS and TPU, i.e., the temperatures at both 5 and 50 wt % mass loss. In addition, PANI with high charring ability also acted as a critical component to generate a synergistic effect with BNO on reducing the fire hazards of PS and TPU. This well-designed structure led to a remarkable reduction of flammable decomposed products and CO and CO2 yields. Meanwhile, a dramatic decrease in the real-time smoke density and total smoke production was observed for PS and TPU nanocomposites with 3 wt % PANI-BNO hybrids, respectively. The multiple synergistic effects (synergistic dispersion, char formation, and barrier effect) are believed to be the primary source for these enhanced properties of polymer nanocomposites.

10.
Ying Yong Sheng Tai Xue Bao ; 28(2): 537-544, 2017 Feb.
Article in Chinese | MEDLINE | ID: mdl-29749162

ABSTRACT

To analyze the tradeoff relationship between twigs and leaves, the traits of Pinus hwang-shanensis including leaf area, leaf number, twig length and twig diameter were investigated in Wuyi Mountains along an altitudinal gradient. The results indicated that leaf number, twig length, twig diameter, leafing intensity and twig stem cross-sectional area of P. hwangshanensis increased gra-dually with the increasing altitude, while individual leaf area decreased gradually. Leafing intensity of P. hwangshanensis at different altitudes had significant negative relationships with leaf area. The cross-sectional area of P. hwangshanensis had significant positive relationship with total leaf area. Twig length and twig diameter of P. hwangshanensis correlated negatively with leafing intensity, but positively with leaf area, leaf number and total leaf area. To enhance the competitiveness and resource utilization efficiency, P. hwangshanensis at low altitude tended to have relatively few large leaves on short twigs, and those at high altitude tended to have a large number of small leaves on long twigs. Such tradeoff between twigs and leaves reflected the strategy of resource utilization and the balance of biomass allocation mechanism of P. hwangshanensis responding to the altitudinal change.


Subject(s)
Pinus , Plant Leaves , Altitude , China , Plant Stems , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...