Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467162

ABSTRACT

Controlling low frequency noise in an interior sound field is always a challenge in engineering, because it is hard to accurately localize the sound source. Spherical acoustic holography can reconstruct the 3D distributions of acoustic quantities in the interior sound field, and identify low-frequency sound sources, but the ultimate goal of controlling the interior noise is to improve the sound quality in the interior sound field. It is essential to know the contributions of sound sources to the sound quality objective parameters. This paper presents the mapping methodology from sound pressure to sound quality objective parameters, where sound quality objective parameters are calculated from sound pressure at each specific point. The 3D distributions of the loudness and sharpness are obtained by calculating each point in the entire interior sound field. The reconstruction errors of those quantities varying with reconstruction distance, sound frequency, and intersection angle are analyzed in numerical simulation for one- and two-monopole source sound fields. Verification experiments have been conducted in an anechoic chamber. Simulation and experimental results demonstrate that the sound source localization results based on 3D distributions of sound quality objective parameters are different from those based on sound pressure.

2.
J Acoust Soc Am ; 145(5): 3048, 2019 May.
Article in English | MEDLINE | ID: mdl-31153341

ABSTRACT

This paper presents a study of intentionally induced acoustic mode complexity in rigid-walled ducts of separable geometry and with uniform mean flow. An intermediately located perforated plate conceptualized as an impedance discontinuity is employed to maximize the acoustic mode complexity, in turn producing a unidirectional traveling wave from the source to the impedance discontinuity. The impedance of the perforated plate for realization of a unidirectional traveling wave is derived analytically and is found to be a function of the modal wavenumbers, the Mach number of the mean flow, the position of the perforated plate, and the termination impedance. The conditions derived analytically are verified computationally by finite element analysis. A measure of acoustic mode complexity is defined and also evaluated from the finite element analysis. It is found that the realization of a unidirectional traveling wave is robust at low Mach number mean flows, except at the occurrence of resonances. The method presented in this work provides a strategy to control the transmission of acoustic energy in rigid-walled ducts of separable geometry in the presence of uniform mean flow.

3.
J Acoust Soc Am ; 143(2): 746, 2018 02.
Article in English | MEDLINE | ID: mdl-29495683

ABSTRACT

A nonreflective airborne discontinuity is created in a one-dimensional rigid-walled duct when the mode complexity introduced by a nonresonant side branch reaches a maximum, so that a sound wave can be spatially separated into physical regions of traveling and standing waves. The nonresonance of the side branch is demonstrated, the mode complexity is quantified, and a computational method to optimize side-branch parameters to maximize mode complexity in the duct in the presence of three-dimensional effects is presented. The optimal side-branch parameters that maximize the mode complexity and thus minimize reflection are found using finite element analysis and a derivative-free optimization routine. Sensitivity of mode complexity near the optimum with respect to side-branch parameters is then examined. The results show reflection from the impedance discontinuity in the duct can be reduced nearly to zero, providing a practical means of achieving a nonreflective discontinuity for a plane wave propagating in a duct of finite length.

4.
J Acoust Soc Am ; 125(3): 1538-48, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19275312

ABSTRACT

The vibroacoustic responses of a highly nonspherical vibrating object are reconstructed using Helmholtz equation least-squares (HELS) method. The objectives of this study are to examine the accuracy of reconstruction and the impacts of various parameters involved in reconstruction using HELS. The test object is a simply supported and baffled thin plate. The reason for selecting this object is that it represents a class of structures that cannot be exactly described by the spherical Hankel functions and spherical harmonics, which are taken as the basis functions in the HELS formulation, yet the analytic solutions to vibroacoustic responses of a baffled plate are readily available so the accuracy of reconstruction can be checked accurately. The input field acoustic pressures for reconstruction are generated by the Rayleigh integral. The reconstructed normal surface velocities are validated against the benchmark values, and the out-of-plane vibration patterns at several natural frequencies are compared with the natural modes of a simply supported plate. The impacts of various parameters such as number of measurement points, measurement distance, location of the origin of the coordinate system, microphone spacing, and ratio of measurement aperture size to the area of source surface of reconstruction on the resultant accuracy of reconstruction are examined.

5.
J Acoust Soc Am ; 117(4 Pt 1): 2065-77, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15898648

ABSTRACT

Transient near-field acoustical holography (NAH) formulation is derived from the Helmholtz equation least squares (HELS) method to reconstruct acoustic radiation from a spherical surface subject to transient excitations in a free field. To facilitate derivations of temporal solutions, we make use of the Laplace transform and expansion in terms of the spherical Hankel functions and spherical harmonics, with their coefficients settled by solving a system of equations obtained by matching an assumed-form solution to the measured acoustic pressure. To derive a general form of solution for a temporal kernel, we replace the spherical Hankel functions and their derivatives by polynomials, recast infinite integrals in the inverse Laplace transform as contour integrals in a complex s-plane, and evaluate it via the residue theorem. The transient acoustic quantities anywhere including the source surface are then obtained by convoluting the temporal kernels with respect to the measured acoustic pressure. Numerical examples of reconstructing transient acoustic fields from explosively expanding, impulsively accelerating, and partially accelerating spheres, and that from a sphere subject to an arbitrarily time-dependent excitation are depicted. To illustrate the effectiveness of HELS-based transient NAH formulations, all input data are collected along an arbitrarily selected line segment and used to reconstruct transient acoustic quantities everywhere.

SELECTION OF CITATIONS
SEARCH DETAIL
...