Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Breed Sci ; 73(3): 261-268, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37840973

ABSTRACT

Ear tip-barrenness (ETB), which results from aborted kernels or infertile florets at the ear tip, is an undesirable factor affecting the yield and quality of waxy maize. To uncover the genetic basis of ETB, a genome-wide association study (GWAS) was conducted using the genotype with 27,354 SNPs and phenotype with three environments. Five SNPs that distributed on chromosomes 1, 3 and 6, were identified to be significantly associated with ETB based on the threshold of false discovery rate (FDR) at 0.05. Among these significant loci, three SNPs were clustered together and colocalized with genomic regions previously reported. The average length of ETB decreased almost linearly from the inbred lines containing no favorable alleles across the three loci (1.75 cm) to those with one (1.18 cm), two (0.94 cm) and three (0.65 cm) favorable alleles. Moreover, three important genes, Zm00001d030028, Zm00001d041510 and Zm00001d038676 were predicted for three significant QTLs, respectively. These results promote the understanding genetic basis for ETB and will be useful for breeding waxy maize varieties with high-quality and high-yield.

2.
Front Plant Sci ; 12: 697688, 2021.
Article in English | MEDLINE | ID: mdl-34305987

ABSTRACT

Kernel moisture content at the harvest stage (KMC) is an important trait that affects the mechanical harvesting of maize grain, and the identification of genetic loci for KMC is beneficial for maize molecular breeding. In this study, we performed a multi-locus genome-wide association study (ML-GWAS) to identify quantitative trait nucleotides (QTNs) for KMC using an association mapping panel of 251 maize inbred lines that were genotyped with an Affymetrix CGMB56K SNP Array and phenotypically evaluated in three environments. Ninety-eight QTNs for KMC were detected using six ML-GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, PLARmEB, PKWmEB, and ISIS EM-BLASSO). Eleven of these QTNs were considered to be stable, as they were detected by at least four ML-GWAS models under a uniformed environment or in at least two environments and BLUP using the same ML-GWAS model. With qKMC5.6 removed, the remaining 10 stable QTNs explained <10% of the phenotypic variation, suggesting that KMC is mainly controlled by multiple minor-effect genetic loci. A total of 63 candidate genes were predicted from the 11 stable QTNs, and 10 candidate genes were highly expressed in the kernel at different time points after pollination. High prediction accuracy was achieved when the KMC-associated QTNs were included as fixed effects in genomic selection, and the best strategy was to integrate all KMC QTNs identified by all six ML-GWAS models. These results further our understanding of the genetic architecture of KMC and highlight the potential of genomic selection for KMC in maize breeding.

3.
Breed Sci ; 68(5): 622-628, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30697124

ABSTRACT

Kernel moisture content at harvest stage (KMC) is an important factor affecting maize production, especially for mechanical harvesting. We investigated the genetic basis of KMC using an association panel comprising of 144 maize inbred lines that were phenotypically evaluated at two field trial locations. Significant positive or negative correlations were identified between KMC and a series of other agronomic traits, indicating that KMC is associated with other such traits. Combining phenotypic values and the Maize SNP3K Beadchip to perform a genome-wide association study revealed eight single nucleotide polymorphisms (SNPs) associated with KMC at P ≤ 0.001 using a mixed linear model (PCA+K). These significant SNPs could be converted into five quantitative trait loci (QTLs) distributed on chromosomes 1, 5, 8, and 9. Of these QTLs, three were colocalized with genomic regions previously reported. Based on the phenotypic values of the alleles corresponding to significant SNPs, the favorable alleles were mined. Eight maize inbred lines with low KMC and harboring favorable alleles were identified. These QTLs and elite maize inbred lines with low KMC will be useful in maize breeding.

4.
PLoS One ; 10(11): e0142585, 2015.
Article in English | MEDLINE | ID: mdl-26566240

ABSTRACT

Waxy maize (Zea mays L. var. ceratina) is an important vegetable and economic crop that is thought to have originated from cultivated flint maize and most recently underwent divergence from common maize. In this study, a total of 110 waxy and 110 common maize inbred lines were genotyped with 3072 SNPs to evaluate the genetic diversity, population structure, and linkage disequilibrium decay as well as identify putative loci that are under positive selection. The results revealed abundant genetic diversity in the studied panel and that genetic diversity was much higher in common than in waxy maize germplasms. Principal coordinate analysis and neighbor-joining cluster analysis consistently classified the 220 accessions into two major groups and a mixed group with mixed ancestry. Subpopulation structure in both waxy and common maize sets were associated with the germplasm origin and corresponding heterotic groups. The LD decay distance (1500-2000 kb) in waxy maize was lower than that in common maize. Fourteen candidate loci were identified as under positive selection between waxy and common maize at the 99% confidence level. The information from this study can assist waxy maize breeders by enhancing parental line selection and breeding program design.


Subject(s)
Plant Breeding , Polymorphism, Single Nucleotide , Zea mays/genetics , Genetic Variation , Linkage Disequilibrium , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...