Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 78(2): M264-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23330823

ABSTRACT

UNLABELLED: Refrigerated cucumber pickle products cannot be heat processed due to the loss of characteristic sensory attributes. Typically brined refrigerated pickles contain less than 100 mM acetic acid with pH values of 3.7 to 4.0. Refrigeration (4 to 10 °C) helps to inhibit the growth of spoilage bacteria and maintain flavor, texture, and appearance of the pickles. Previous research has shown that pathogenic Escherichia coli strains are unusually acid resistant and survive better in refrigerated acid solutions than at higher temperatures. We found that E. coli O157:H7 can survive for 1 mo or longer at 4 °C in brines typical of commercial refrigerated pickles. Our objective was to develop methods to assure a 5-log reduction of pathogenic E. coli in these types of products, while maintaining the sensory characteristics. A novel brine formulation was developed, based on current commercial refrigerated pickle brines, which contained 25 mM fumaric acid, 5 mM benzoic acid, 70 mM acetic acid, and 342 mM (2%) sodium chloride, with a pH of 3.8. Sensory data indicate that this formulation did not affect flavor or other sensory attributes of the product, compared to traditional formulations. We achieved a 5-log reduction of E. coli O157:H7 at 30 °C for 1.52 ± 0.15 d, at 20 °C for 3.12 ± 0.34 d, or at 10 °C for 8.83 ± 0.56 d. Growth of lactic acid bacteria was also inhibited. These results can be used by manufacturers to assure a 5-log reduction in cell numbers of E. coli O157:H7 and Salmonella without a heat process during the manufacture of refrigerated pickle products. PRACTICAL APPLICATION: While refrigerated acidified vegetable products are exempt from the acidified foods regulations, we have shown that the vegetative microbial pathogens E. coli O157:H7 can survive for up to 1 mo in these products, given current commercial production practices. To improve the safety of refrigerated pickle products, a brine formulation with reduced acetic acid, but containing fumaric acid, was developed to assure a 5-log reduction in cell numbers of E. coli O157:H7 without a heat process. The formulation can be used to assure the safety of refrigerated pickled vegetables without altering sensory characteristics.


Subject(s)
Cucumis sativus/microbiology , Escherichia coli O157/growth & development , Food Contamination/prevention & control , Food Handling/methods , Food Microbiology , Refrigeration/methods , Acetic Acid/analysis , Colony Count, Microbial , Consumer Behavior , Consumer Product Safety , Cucumis sativus/chemistry , Fermentation , Food Preservation/methods , Fumarates/analysis , Humans , Hydrogen-Ion Concentration , Lactic Acid/analysis , Nonlinear Dynamics , Salmonella/growth & development , Salts/analysis , Salts/chemistry
2.
J Food Prot ; 74(6): 893-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21669064

ABSTRACT

Outbreaks of disease due to vegetative bacterial pathogens associated with acid foods (such as apple cider) have raised concerns about acidified vegetables and related products that have a similar pH (3.2 to 4.0). Escherichia coli O157:H7 and related strains of enterohemorrhagic E. coli (EHEC) have been identified as the most acid resistant vegetative pathogens in these products. Previous research has shown that the lack of dissolved oxygen in many hermetically sealed acid or acidified food products can enhance survival of EHEC compared with their survival under aerobic conditions. We compared the antimicrobial effects of several food acids (acetic, malic, lactic, fumaric, benzoic, and sorbic acids and sulfite) on a cocktail of EHEC strains under conditions representative of non-heat-processed acidified vegetables in hermetically sealed jars, holding the pH (3.2) and ionic strength (0.342) constant under anaerobic conditions. The overall antimicrobial effectiveness of weak acids used in this study was ranked, from most effective to least effective: sulfite > benzoic acid > sorbic acid > fumaric acid > L- and D-lactic acid > acetic acid > malic acid. These rankings were based on the estimated protonated concentrations required to achieve a 5-log reduction in EHEC after 24 h of incubation at 30°C. This study provides information that can be used to formulate safer acid and acidified food products and provides insights about the mode of action of weak acids against EHEC.


Subject(s)
Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli O157/drug effects , Food Contamination/analysis , Food Preservation/methods , Oxygen/pharmacology , Colony Count, Microbial , Consumer Product Safety , Escherichia coli O157/growth & development , Humans , Hydrogen-Ion Concentration , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...