Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 629(Pt B): 591-597, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36179578

ABSTRACT

Design and engineering of effective electrode catalysts represents a critical first step for hydrogen production by electrochemical water splitting. Nanocomposites based on ruthenium atomically dispersed within a carbon scaffold have emerged as viable candidates. In the present study, ruthenium metal centers are atomically embedded within graphitic carbon nitride/reduced graphene oxide nanosheets by thermal refluxing. Subsequent chemical reduction/oxidation leads to ready manipulation of the ruthenium valence state, as evidenced in microscopic and spectroscopic measurements, and hence enhancement/diminishment of the electrocatalytic activity towards hydrogen evolution reaction in both acidic and alkaline media. This is largely ascribed to the increased/reduced contribution of the Ru valence electrons to the density of state near the Fermi level which dictates the binding and reduction of hydrogen. Results from this study highlight the significance of the valence state of metal centers in the manipulation and optimization of the catalytic performance of single atom catalysts.

2.
Adv Mater ; 35(8): e2208665, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36462218

ABSTRACT

Copper compounds have been extensively investigated for diverse applications. However, studies of cuprous hydroxide (CuOH) have been scarce due to structural metastability. Herein, a facile, wet-chemistry procedure is reported for the preparation of stable CuOH nanostructures via deliberate functionalization with select organic ligands, such as acetylene and mercapto derivatives. The resulting nanostructures are found to exhibit a nanoribbon morphology consisting of small nanocrystals embedded within a largely amorphous nanosheet-like scaffold. The acetylene derivatives are found to anchor onto the CuOH forming CuC linkages, whereas CuS interfacial bonds are formed with the mercapto ligands. Effective electronic coupling occurs at the ligand-core interface in the former, in contrast to mostly non-conjugated interfacial bonds in the latter, as manifested in spectroscopic measurements and confirmed in theoretical studies based on first principles calculations. Notably, the acetylene-capped CuOH nanostructures exhibit markedly enhanced photodynamic activity in the inhibition of bacteria growth, as compared to the mercapto-capped counterparts due to a reduced material bandgap and effective photocatalytic generation of reactive oxygen species. Results from this study demonstrate that deliberate structural engineering with select organic ligands is an effective strategy in the stabilization and functionalization of CuOH nanostructures, a critical first step in exploring their diverse applications.

3.
Nano Lett ; 21(9): 4129-4135, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33939439

ABSTRACT

Aqueous rechargeable zinc-iodine batteries (ZIBs) are promising candidates for grid energy storage because they are safe and low-cost and have high energy density. However, the shuttling of highly soluble triiodide ions severely limits the device's Coulombic efficiency. Herein, we demonstrate for the first time a double-layered cathode configuration with a conductive layer (CL) coupled with an adsorptive layer (AL) for ZIBs. This unique cathode structure enables the formation and reduction of adsorbed I3- ions at the CL/AL interface, successfully suppressing triiodide ion shuttling. A prototypical ZIB using a carbon cloth as the CL and a polypyrrole layer as the AL simultaneously achieves outstanding Coulombic efficiency (up to 95.6%) and voltage efficiency (up to 91.3%) in the aqueous ZnI2 electrolyte even at high-rate intermittent charging/discharging, without the need of ion selective membranes. These findings provide new insights to the design and fabrication of ZIBs and other batteries based on conversion reactions.

4.
Nano Lett ; 21(9): 3731-3737, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33719451

ABSTRACT

Maintaining fast charging capability at low temperatures represents a significant challenge for supercapacitors. The performance of conventional porous carbon electrodes often deteriorates quickly with the decrease of temperature due to sluggish ion and charge transport. Here we fabricate a 3D-printed multiscale porous carbon aerogel (3D-MCA) via a unique combination of chemical methods and the direct ink writing technique. 3D-MCA has an open porous structure with a large surface area of ∼1750 m2 g-1. At -70 °C, the symmetric device achieves outstanding capacitance of 148.6 F g-1 at 5 mV s-1. Significantly, it retains a capacitance of 71.4 F g-1 at a high scan rate of 200 mV s-1, which is 6.5 times higher than the non-3D printed MCA. These values rank among the best results reported for low temperature supercapacitors. These impressive results highlight the essential role of open porous structures for preserving capacitive performance at ultralow temperatures.

5.
J Am Chem Soc ; 142(39): 16651-16660, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32881488

ABSTRACT

We report that an agile eight-membered cycloalkane can be stabilized by fusing a benzene ring on each side, substituted with proper functional groups. The conformational change of dibenzocycloocta-1,5-diene (DBCOD), a rigid-flexible-rigid organic moiety, from its Boat to Chair conformation requires an activation energy of 42 kJ/mol, which is substantially lower than those of existing submolecular shape-changing units. Experimental data corroborated by theoretical calculations demonstrate that intramolecular hydrogen bonding can stabilize Boat, whereas electron repulsive interaction from opposing ester substituents favors Chair. Intramolecular hydrogen bonding formed by 1,10-diamide substitution stabilizes Boat, spiking the temperature at which Boat and Chair can readily interchange from -60 to 60 °C. Concomitantly this intramolecular attraction raises the energy barrier from 42 kJ/mol for unsubstituted DBCOD to 68 kJ/mol for diamide-substituted DBCOD. Remarkably, this value falls within the range of the activation energy of highly efficient enzyme-catalyzed biological reactions. With shape changes once considered only possible with high energy, our work reveals a potential pathway exemplified by a specific submolecular structure to achieve low-energy-driven shape changes for the first time. The intrinsic cycle stability and high-energy output systems that would incur damage under high-energy stimuli could particularly benefit from this new kind of low-energy-driven shape-changing mechanism. This work has laid the basis to construct systems for low-energy-driven stimuli-responsive applications, hitherto a challenge to overcome.

6.
Nanoscale ; 8(22): 11617-24, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27217228

ABSTRACT

We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel. The 3D carbon platform is formed by direct growth of upright arrays of carbon nanofiber bundles on a roughened surface of stainless steel via the seed-assisted approach. Each bundle consists of about 30 individual carbon nanofibers with a diameter of 18 nm on average. We have found that this new platform offers adequate structural integrity. As a result, no reduction of the surface area during downstream chemical functionalization was observed. With a fixed and reproducible 3D structure, the effect of the chemistry of the grafted species on the oxygen reduction reaction has been systematically investigated. This investigation reveals for the first time that non-conductive Si with an appropriate electronic structure distorts the carbon electronic structure and consequently enhances ORR electrocatalysis. The strong interface provides excellent electron connectivity according to electrochemical analysis. This highly reproducible and stable 3D platform can serve as a stepping-stone for the investigation of the effect of carbon surface functionalization on electrochemical reactions in general.

7.
Chem Commun (Camb) ; 51(10): 1908-10, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25531983

ABSTRACT

Porous magnetic supraparticles (p-MSPs) with surface area up to 285.4 m(2) g(-1) have been fabricated by a one-step etching method, which is 4 times greater than the unetched counterpart. They exhibit significantly better biodegradability than their counterpart in both mimicked physiological buffer solution and the cellular environment of HeLa cells.


Subject(s)
Magnetic Phenomena , Nanoparticles/chemistry , Nanoparticles/metabolism , Buffers , Cellular Microenvironment/physiology , HeLa Cells , Humans , Microscopy, Electron, Transmission , Molecular Structure , Porosity
8.
ACS Nano ; 8(11): 11695-706, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25327464

ABSTRACT

We have designed and fabricated a nanocomposite substrate that can deliver spatially and temporally defined mechanical forces onto cells. This nanocomposite substrate comprises a 1.5-mm-thick near-infrared (NIR) mechanoresponsive bottom layer of few-walled carbon nanotubes (FWCNTs) that are uniformly distributed and covalently connected to thermally responsive poly(N-isopropylacrylamide) and an approximately 0.15-mm-thick cell-seeding top layer of collagen-functionalized poly(acrylic acid)-co-poly(N-isopropylacrylamide) that interpenetrates into the bottom layer. Covalent coupling of all the components and uniform distribution of FWCNTs lead to a large local mechanoresponse. As an example, 50% change in strain at the point of irradiation on the order of 0.05 Hz can be produced reversibly under NIR stimulation with 0.02 wt % FWCNTs. We have further demonstrated that the mechanical strain imposed by NIR stimulation can be transmitted onto cells. Human fetal hepatocytes change shape with no sign of detrimental effect on cell viability. To the best of our knowledge, this is the first demonstration of a nanocomposite platform that can generate fast and controlled mechanical force to actuate cells. Since the amplitude, location, and timing of force can be controlled remotely with NIR, the nanocomposite substrate offers the potential to provide accurately designed force sequences for tissue engineering.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Microscopy, Electron, Scanning , Proton Magnetic Resonance Spectroscopy , Spectroscopy, Near-Infrared
9.
Nat Chem ; 5(12): 1035-41, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24256868

ABSTRACT

Mechanoresponsive polymers hold great technological potential in drug delivery, 'smart' optical systems and microelectromechanical systems. However, hysteresis and fatigue (associated with large-scale polymer chain rearrangement) are often problematic. Here, we describe a polyarylamide film that contains s-dibenzocyclooctadiene (DBCOD), which can generate unconventional and completely reversible thermal contraction under low-energy stimulation. The films exhibit a giant negative thermal expansion coefficient of approximately -1,200 ppm K(-1) at ambient or near-ambient temperatures, much higher than any known negative-thermal-expansion materials under similar operating conditions. Mechanical characterization, calorimetry, spectroscopic analysis and density-functional theory calculations all point to the conformational change of the DBCOD moiety, from the thermodynamic global energy minimum (twist-boat) to a local minimum (chair), as the origin of this abnormal thermal shrinkage. This newly identified, low-energy-driven, thermally agile molecular subunit opens a new pathway to creating near-infrared-based macromolecular switches and motors, and for ambient thermal energy storage and conversion.

10.
ACS Appl Mater Interfaces ; 5(23): 12329-39, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24274577

ABSTRACT

Mesoporous magnetic supraparticles (meso-MSPs) as multifunctional targeted drug carriers have attracted much attention, because of their easy magnetic-field manipulation and in situ sensing functionality. In this paper, a Fe(3+)-selective chemodosimeter fluorescent probe (FP-1) was synthesized and loaded inside of the meso-MSPs (meso-MSPs/probe); the meso-MSPs/probe nanocomposites were then used to monitor the degradation of meso-MSPs in cells. In our experiments, strong fluorescence intensity was observed in HeLa cells, because of their acidic intracellular environment, which can quickly degrade the meso-MSPs and then release Fe(3+) ions in cells that, in turn, activate the fluorescence of FP-1. Meanwhile, a very weak fluorescence signal was detected in HEK 293T cells due to the relative neutral intracellular environment of HEK 293T cells, which prevented the Fe(3+) ion from leaching out of meso-MSPs. Moreover, this degradation-luminescence relationship of the meso-MSPs/probe nanocomposites not only assisted us to understand the degradation status of meso-MSPs in cells, but also allowed us to recognize the peculiarity of different cells with various intracellular environments.


Subject(s)
Magnetics , Optics and Photonics , Fluorescent Dyes , HEK293 Cells , HeLa Cells , Humans , Microscopy, Confocal , Microscopy, Electron, Transmission
11.
Langmuir ; 22(11): 5174-9, 2006 May 23.
Article in English | MEDLINE | ID: mdl-16700610

ABSTRACT

Iron-containing nanostructures produced from various self-assembled poly(ferrocenylsilane)-block-polysiloxane thin films are catalytically active for the initiation and growth of high density, small diameter carbon nanotubes (CNTs). Moreover, the tube diameter and density can be tuned by adjusting the chain lengths of the block copolymer. Iron-containing nanostructures from poly(ferrocenylmethylethylsilane)-b-poly(methylvinylsiloxane) polymer with 25 repeat units of an iron-containing segment and 265 repeat units of a non-iron-containing segment are able to produce CNTs with diameters around or less than 1 nm. Lithographically selective growth of CNTs across a large surface area has been demonstrated using this polymer system. Under the same growth condition, it has been found that the yield of defect-free CNTs varies with the size of the catalytically active nanostructures, which are dictated by the chain lengths of the two blocks. This result indicates that, for a specific-sized catalyst nanocluster, a unique set of growth conditions is required for synthesizing high yield, defect-free CNTs. This finding further addresses the importance of using uniform-sized catalyst-containing nanostructures for consistently achieving high-yield and high-quality CNTs with a minimum number of defects and amount of amorphous carbon.

12.
Langmuir ; 22(9): 3951-4, 2006 Apr 25.
Article in English | MEDLINE | ID: mdl-16618129

ABSTRACT

A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.

SELECTION OF CITATIONS
SEARCH DETAIL
...