Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(37): eadi9108, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713481

ABSTRACT

Normally, stirring is regarded as a technology to disperse the substances in liquid evenly. However, Einstein's tea leaf paradox (ETLP) describes the phenomenon that tea leaves concentrate in a "doughnut" shape via a secondary flow effect while stirring. Herein, to demonstrate ETLP-induced concentration in nanofluid, we simulated the nanoparticle trajectory under stirring and made a grayscale analysis of SiO2 nanofluids during stirring and standing processes. Unexpectedly, a localized concentration effect in the layer flow was found beside the macroscopic ETLP effect. Subsequently, the localized concentration was applied to achieve the ultrafast aggregation of Au nanoparticles to form gold aerogels (GAs). The skeleton size of GAs was adjusted from about 10 to 200 nm by only adjusting the temperature of HAuCl4 solution. The fabricated GAs had extremely high purity and crystallinity, revealing potential applications in photocatalysis and surface-enhanced Raman scattering.

2.
Medicine (Baltimore) ; 101(41): e30904, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36254034

ABSTRACT

BACKGROUND: LCZ696 is a novel neuroendocrine inhibitor that has been widely used in heart failure (HF). However, its advantage over other neuroendocrine inhibitors, such as angiotensin-converting enzyme inhibitors (ACEis) and angiotensin-receptor blockers (ARBs) has not been fully elucidated. This study aimed to provide the latest evidence regarding the efficacy and safety of LCZ696 as compared to other ACEis and ARBs with regards to the treatment of HF. METHODS: We systematically searched databases, including PubMed, Embase, and the Cochrane Library, for relevant randomized controlled trials (RCTs). The outcome measures included all-cause mortality, rate of hospitalizations for HF, rate of death from cardiovascular causes, change in N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, and decline of renal function. RESULTS: Five RCTs involving 19,078 patients were identified. The meta-analysis indicated that LCZ696 was associated with a significant reduction in all-cause mortality (hazard ratio [HR] = 0.84; 95% confidence interval [CI], 0.76-0.93; P = .0005), rate of hospitalizations for HF (HR = 0.80; 95% CI, 0.73-0.87; P < .00001), reduction in NT-proBNP levels (rate ratio = 0.78; 95% CI, 0.70-0.88; P < .0001), and decline in renal function (odds ratio = 0.77; 95% CI, 0.68-0.88; P < .0001) compared with ACEis and ARBs. However, there was no statistical difference in the rate of death from cardiovascular causes (HR = 0.86; 95% CI, 0.72-1.03; P = .09) between LCZ696 and ACEis and ARBs. CONCLUSION: LCZ696 is superior to ACEis and ARBs in the treatment of HF. Hence, it should be more widely used clinically.


Subject(s)
Heart Failure , Neprilysin , Aminobutyrates , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensins , Antihypertensive Agents , Biphenyl Compounds , Drug Combinations , Heart Failure/drug therapy , Humans , Randomized Controlled Trials as Topic , Receptors, Angiotensin , Valsartan
3.
Gels ; 9(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36661783

ABSTRACT

As a kind of efficient adsorptive material, hydrogel has a wide application prospect within different fields, owing to its unique 3D network structures composed of polymers. In this paper, different synthetic strategies, crosslinking methods and their corresponding limitations and outstanding contributions of applications in the fields of removing environmental pollutants are reviewed to further provide a prospective view of their applications in water resources sustainability. Furthermore, the applications within the biomedical field, especially in wound dressing, are also reviewed in this paper, mainly due to their unique water retention ability, antibacterial ability, and good biocompatibility. Finally, the development direction of hydrogels in the fields of environmental remediation and biomedicine were summarized and prospected.

4.
Sci Rep ; 10(1): 11743, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678151

ABSTRACT

Silica aerogels are low density solids with high surface area and high porosity which are ideal supports for catalyst materials. The main challenge in aerogel production is the drying process, which must remove liquid from the pores of the wet gel while maintaining the solid network. In this work, the synthesis of silica aerogels and nickel-doped silica aerogels by a low energy budget process is demonstrated. Silica aerogels are produced by ambient drying using ammonium bicarbonate, rather than a conventional low surface tension solvent. Heating dissociates the ammonium bicarbonate, so generating CO2 and NH3 within the pores of the wet gel which prevents pore collapse during drying. Nickel-doped aerogels were produced by reducing nickel ions within pre-synthesised silica aerogels. The morphology of the resulting nickel particles-spheres, wires and chains-could be controlled through an appropriate choice of synthesis conditions. Materials were characterized using nitrogen adsorption/desorption isotherms, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis and X-ray diffraction. The surface area of undoped aerogel is found to increase with the concentration of ammonium bicarbonate salts from 360 to 530 m2 g-1, and that of nickel-doped silica aerogel varies from 240 to 310 m2 g-1 with nickel doping conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...