Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 663: 287-294, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402823

ABSTRACT

The co-assembly of different peptide chains usually leads to the formation of intricate architectures and sophisticated functions in biological systems. Although the co-assembly of stereoisomeric peptides represents a facile and flexible strategy for the synthesis of peptide-based nanomaterials with novel structures and potentially interesting properties, there is a lack of a general knowledge on how different isomers pack during assembly. Through the combined use of simulations and experimental observations, we report that heterochiral pairing is preferred to homochiral pairing at the molecular scale but self-sorting dictates beyond the molecular level for the mixtures of the short stereoisomeric ß-sheet peptides I3K (Ile-Ile-Ile-Lys). Furthermore, we demonstrate that flat ß-sheets and fibril morphology are always preferred to twisted ones during heterochiral pairing and subsequent assembly. However, the heterochiral pairing into flat morphology is not always at an equimolar ratio. Instead, a non-equimolar ratio (1:2) is observed for the mixing of homochiral LI3LK and heterochiral LI3DK, whose strand twisting degrees differ greatly. Such a study provides a paradigm for understanding the co-assembly of stereoisomeric peptides at the molecular scale and harnessing their blending for targeted nanostructures.


Subject(s)
Nanostructures , Peptides , Stereoisomerism , Peptides/chemistry , Nanostructures/chemistry , Protein Conformation, beta-Strand
2.
Biomacromolecules ; 25(3): 1602-1611, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38323536

ABSTRACT

Helicobacter pylori can cause various gastric conditions including stomach cancer in an acidic environment. Although early H. pylori infections can be treated by antibiotics, prolonged antibiotic administrations may lead to the development of antimicrobial resistance, compromising the effectiveness of the treatments. Antimicrobial peptides (AMPs) have been reported to possess unique advantages against antimicrobial-resistant bacteria due to their rapid physical membrane disruptions and anti-inflammation/immunoregulation properties. Herein, we have developed an AMP hydrogel, which can be orally administered for the treatment of H. pylori infection. The hydrogel has potent antimicrobial activity against H. pylori, achieving bacterial eradication within minutes of action. Compared with the AMP solution, the hydrogel formulation significantly reduced the cytotoxicity and enhanced proteolytic stability. In vivo experiments suggested that the hydrogel formed at pH 4 had superior therapeutic effects to those at pH 7 and 10 hydrogels, attributed to its rapid release and bactericidal action within the acidic stomach environment. Compared to conventional antibiotic treatments, the AMP hydrogel had the advantages of fast bacterial killing in the gastric juice and obviated proton pump inhibitors during the treatment. Although both the AMP hydrogel and antibiotics suppressed the expression of pro-inflammatory cytokines, the former uniquely promoted inflammation resolution. These results indicate that the AMP hydrogels with effectiveness and biosafety may be potential candidates for the clinical treatment of H. pylori infections.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Antimicrobial Peptides , Hydrogels/pharmacology , Hydrogels/therapeutic use , Anti-Bacterial Agents
3.
Small ; 20(5): e2304424, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37726235

ABSTRACT

Peptide assemblies are promising nanomaterials, with their properties and technological applications being highly hinged on their supramolecular architectures. Here, how changing the chirality of the terminal charged residues of an amphiphilic hexapeptide sequence Ac-I4 K2 -NH2 gives rise to distinct nanostructures and supramolecular handedness is reported. Microscopic imaging and neutron scattering measurements show thin nanofibrils, thick nanofibrils, and wide nanotubes self-assembled from four stereoisomers. Spectroscopic and solid-state nuclear magnetic resonance (NMR) analyses reveal that these isomeric peptides adopt similar anti-parallel ß-sheet secondary structures. Further theoretical calculations demonstrate that the chiral alterations of the two C-terminal lysine residues cause the formation of diverse single ß-strand conformations, and the final self-assembled nanostructures and handedness are determined by the twisting direction and degree of single ß-strands. This work not only lays a useful foundation for the fabrication of diverse peptide nanostructures by manipulating the chirality of specific residues but also provides a framework for predicting the supramolecular structures and handedness of peptide assemblies from single molecule conformations.


Subject(s)
Functional Laterality , Nanostructures , Peptides/chemistry , Nanostructures/chemistry , Isomerism , Protein Structure, Secondary
4.
J Control Release ; 362: 577-590, 2023 10.
Article in English | MEDLINE | ID: mdl-37683733

ABSTRACT

Bacterial infections and excessive inflammation can impede the healing of wounds. Hydrogels have emerged as a promising approach for dressing bacterial-infected injuries. However, some antibacterial hydrogels are complex, costly, and even require assistance with other instruments such as light, making them unsuitable for routine outdoor injuries. Here, we developed an in-situ generating hydrogel via hybridizing oxidized ß-D-glucan with antimicrobial peptide C8G2 through the Schiff base reaction. This hydrogel is easily accessible and actively contributes to the whole healing process of bacterial-infected wounds, demonstrating remarkable antibacterial activity and biological compatibility. The pH-sensitive reversible imine bond enables the hydrogel to self-heal and sustainably release the antibacterial peptide, thereby improving its bioavailability and reducing toxicity. Meanwhile, the immunoregulating ß-D-glucan inhibits the release of inflammatory factors while promoting the release of anti-inflammatory factors. In methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin wound models, the hybrid hydrogel showed superior antibacterial and anti-inflammatory activity, enhanced the M2 macrophage polarization, expedited wound closure, and regenerated epidermis tissue. These features make this hydrogel an appealing wound dressing for treating multi-drug-resistant bacteria-infected wounds.


Subject(s)
Deafness , Methicillin-Resistant Staphylococcus aureus , beta-Glucans , Humans , beta-Glucans/therapeutic use , Hydrogels , Wound Healing , Glucans , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use
5.
Mol Pharm ; 20(5): 2502-2512, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37012645

ABSTRACT

Interfacial adsorption of monoclonal antibodies (mAbs) can cause structural deformation and induce undesired aggregation and precipitation. Nonionic surfactants are often added to reduce interfacial adsorption of mAbs which may occur during manufacturing, storage, and/or administration. As mAbs are commonly manufactured into ready-to-use syringes coated with silicone oil to improve lubrication, it is important to understand how an mAb, nonionic surfactant, and silicone oil interact at the oil/water interface. In this work, we have coated a polydimethylsiloxane (PDMS) nanofilm onto an optically flat silicon substrate to facilitate the measurements of adsorption of a model mAb, COE-3, and a commercial nonionic surfactant, polysorbate 80 (PS-80), at the siliconized PDMS/water interface using spectroscopic ellipsometry and neutron reflection. Compared to the uncoated SiO2 surface (mimicking glass), COE-3 adsorption to the PDMS surface was substantially reduced, and the adsorbed layer was characterized by the dense but thin inner layer of 16 Å and an outer diffuse layer of 20 Å, indicating structural deformation. When PS-80 was exposed to the pre-adsorbed COE-3 surface, it removed 60 wt % of COE-3 and formed a co-adsorbed layer with a similar total thickness of 36 Å. When PS-80 was injected first or as a mixture with COE-3, it completely prevented COE-3 adsorption. These findings reveal the hydrophobic nature of the PDMS surface and confirm the inhibitory role of the nonionic surfactant in preventing COE-3 adsorption at the PDMS/water interface.


Subject(s)
Antibodies, Monoclonal , Surface-Active Agents , Surface-Active Agents/chemistry , Adsorption , Antibodies, Monoclonal/chemistry , Silicon Dioxide , Silicone Oils/chemistry , Polysorbates/chemistry , Dimethylpolysiloxanes
6.
J Colloid Interface Sci ; 637: 182-192, 2023 May.
Article in English | MEDLINE | ID: mdl-36701864

ABSTRACT

HYPOTHESIS: It is widely regarded that antimicrobial peptides (AMPs) kill bacteria by physically disrupting microbial membranes and causing cytoplasmic leakage, but it remains unclear how AMPs disrupt the outer membrane (OM) of Gram-negative bacteria (GNB) and then compromise the inner membrane. We hypothesise that different AMPs impose different structural disruptions, with direct implications to their antimicrobial efficacies. EXPERIMENTS: The antimicrobial activities of three typical AMPs, including the designed short AMP, G3, and two natural AMPs, melittin and LL37, against E. coli and their haemolytic activities were studied. Lipopolysaccharide (LPS) and anionic di-palmitoyl phosphatidyl glycerol (DPPG) monolayer models were constructed to mimic the outer membrane and inner membrane leaflets of Gram-negative bacteria. The binding and penetration of AMPs to the model lipid monolayers were systematically studied by neutron reflection via multiple H/D contrast variations. FINDING: G3 has relatively high antimicrobial activity, low cytotoxicity, and high proteolytic stability, whilst melittin has significant haemolysis and LL37 has weaker antimicrobial activity. G3 could rapidly lyse LPS and DPPG monolayers within 10-20 min. In contrast, melittin was highly active against the LPS membrane, but the dynamic process lasted up to 80 min, with excessive stacking in the OM. LL37 caused rather weak destruction to LPS and DPPG monolayers, leading to massive adsorption on the membrane surface without penetrating the lipid tail region. These findings demonstrate that the rationally designed AMP G3 was well optimised to impose most effective destruction to bacterial membranes, consistent with its highest bactericidal activity. These different interfacial structural features associated with AMP binding shed light on the future development of active and biocompatible AMPs for infection and wound treatments.


Subject(s)
Anti-Infective Agents , Lipopolysaccharides , Lipopolysaccharides/pharmacology , Lipopolysaccharides/chemistry , Antimicrobial Peptides , Melitten/pharmacology , Melitten/metabolism , Escherichia coli/metabolism , Anti-Infective Agents/chemistry , Gram-Negative Bacteria/metabolism , Bacteria/metabolism , Cell Membrane/metabolism , Anti-Bacterial Agents/chemistry
7.
ACS Nano ; 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36608273

ABSTRACT

The rational design of lipid nanoparticles (LNPs) for enhanced gene delivery remains challenging because of incomplete knowledge of their formulation-structure relationship that impacts their intracellular behavior and consequent function. Small-angle neutron scattering has been used in this work to investigate the structure of LNPs encapsulating plasmid DNA upon their acidification (from pH 7.4 to 4.0), as would be encountered during endocytosis. The results revealed the acidification-induced structure evolution (AISE) of the LNPs on different dimension scales, involving protonation of the ionizable lipid, volume expansion and redistribution of aqueous and lipid components. A similarity analysis using an LNP's structural feature space showed a strong positive correlation between function (measured by intracellular luciferase expression) and the extent of AISE, which was further enhanced by the fraction of unsaturated helper lipid. Our findings reveal molecular and nanoscale changes occurring during AISE that underpin the LNPs' formulation-nanostructure-function relationship, aiding the rational design of application-directed gene delivery vehicles.

8.
Small ; 19(3): e2204428, 2023 01.
Article in English | MEDLINE | ID: mdl-36417574

ABSTRACT

Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Anti-Infective Agents/pharmacology , Bacteria , Molecular Dynamics Simulation
9.
J Colloid Interface Sci ; 630(Pt B): 911-923, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36368131

ABSTRACT

HYPOTHESIS: Designed antimicrobial lipopeptides (ALPs) offer the attractive benefits of short peptide sequences and flexible tuning of amphiphilicity by altering the acyl chain length. These lipopeptides kill microbes by forming intriguing in-membrane nanostructures and causing the leakage of internal contents. However, how subtle differences in the molecular structures of the lipopeptides affect their antimicrobial efficacy and biocompatibility to host cells is still under-investigated. EXPERIMENTS: This work focuses on assessing changes in the acyl chain length of CH3(CH2)n-2CO-KKKIII-NH2 (n = 10, 12 and 14, K = lysine, I = isoleucine, denoted as CnKI3) on the antimicrobial potency and cytotoxicity by combining biological assays with physical measurements. Aggregation properties were characterized by changes in critical aggregation concentration (CAC) from surface tension measurements. Antimicrobial susceptibility tests, cytotoxic MTT assays, haemolytic tests, and dynamic bactericidal experiments were employed to reveal their bioactive potency toward different types of cells. To further investigate lipopeptides' underlying antimicrobial and cytotoxic mechanisms, lipid monolayer and lipid small unilamellar vesicle (SUV) models were established and biophysically characterized. FINDINGS: An increase in n led to the decrease in the CAC of CnKI3, showing a rising membrane-lytic power. Subsequent bioactive measurements revealed the optimal performance of C12KI3 from this series of lipopeptides. The selective membrane binding behaviour was well supported by neutron reflection data from charged lipid monolayer models, revealing membrane-supported nanostructures of ALPs. However, increased membrane-lytic actions in C14KI3 led to notably increased toxicity and reduced selectivity. On the other hand, C14KI3 can impose faster dynamic killing than natural lipopeptide polymyxin B, showing the distinct impact of the amphiphilic balance from the designed lipopeptide. In contrast, the distinctly weaker binding to zwitterionic membrane models (monolayers and SUVs) provided direct nanoscale structural evidence to the mildness of the designed ALPs on host cells. This work demonstrates the high selectivity and fast killing of rationally designed short ALPs to microbes via in-membrane nanostructuring.


Subject(s)
Anti-Infective Agents , Lipopeptides , Lipopeptides/pharmacology , Lipopeptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Surface Tension , Amino Acid Sequence
10.
J Am Chem Soc ; 144(47): 21544-21554, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36345816

ABSTRACT

Peptide self-assembly is a hierarchical process during which secondary structures formed in the initial stages play a critical role in determining the subsequent assembling processes and final structural ordering. Unusual secondary structures hold promise as a source to develop novel supramolecular architectures with unique properties. In this work, we report the design of a new peptide self-assembly strategy based on unusual α-sheet secondary structures. In light of the strong propensity of leucine toward forming helical conformations and its high hydrophobicity, we design two short amphiphilic peptides Ac-LDLLDLK-NH2 and Ac-DLLDLLDK-NH2 with alternating l- and d-form amino acids. Microscopic imaging, neutron scattering, and spectroscopic measurements indicate that the two heterochiral peptides form highly ordered wide nanotubes and helical ribbons with monolayer thickness, in sharp contrast to twisted nanofibrils formed by the homochiral peptide Ac-LLLLK-NH2. Molecular dynamics simulations from monomers to trimers reveal that the two heteropeptides fold into α-sheets instead of ß-sheets, which readily pack into tubular architectures in oligomer simulations. Simulated circular dichroism spectra based on α-sheet oligomers validate the proposed α-sheet secondary structures. These results form an important basis for the rational design of higher-order peptide assemblies with novel properties based on unusual α-sheet secondary structures.


Subject(s)
Amino Acids , Peptides , Peptides/chemistry , Protein Structure, Secondary , Circular Dichroism , Protein Conformation, beta-Strand
11.
Langmuir ; 38(21): 6623-6637, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35587380

ABSTRACT

Cationic biocides have been widely used as active ingredients in personal care and healthcare products for infection control and wound treatment for a long time, but there are concerns over their cytotoxicity and antimicrobial resistance. Designed lipopeptides are potential candidates for alleviating these issues because of their mildness to mammalian host cells and their high efficacy against pathogenic microbial membranes. In this study, antimicrobial and cytotoxic properties of a de novo designed lipopeptide, CH3(CH2)12CO-Lys-Lys-Gly-Gly-Ile-Ile-NH2 (C14KKGGII), were assessed against that of two traditional cationic biocides CnTAB (n = 12 and 14), with different critical aggregation concentrations (CACs). C14KKGGII was shown to be more potent against both bacteria and fungi but milder to fibroblast host cells than the two biocides. Biophysical measurements mimicking the main features of microbial and host cell membranes were obtained for both lipid monolayer models using neutron reflection and small unilamellar vesicles (SUVs) using fluorescein leakage and zeta potential changes. The results revealed selective binding to anionic lipid membranes from the lipopeptide and in-membrane nanostructuring that is distinctly different from the co-assembly of the conventional CnTAB. Furthermore, CnTAB binding to the model membranes showed low selectivity, and its high cytotoxicity could be attributed to both membrane lysis and chemical toxicity. This work demonstrates the advantages of the lipopeptides and their potential for further development toward clinical application.


Subject(s)
Anti-Infective Agents , Disinfectants , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/toxicity , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/toxicity , Disinfectants/pharmacology , Lipopeptides/pharmacology , Mammals , Microbial Sensitivity Tests
12.
J Colloid Interface Sci ; 609: 491-502, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34863541

ABSTRACT

HYPOTHESIS: l-carnitines in our body systems can be readily converted into acyl-l-carnitines which have a prominent place in cellular energy generation by supporting the transport of long-chain fatty acids into mitochondria. As biocompatible surfactants, acyl-l-carnitines have potential to be useful in technical, personal care and healthcare applications. However, the lack of understanding of the effects of their molecular structures on their physical properties has constrained their potential use. EXPERIMENTS: This work reports the study of the influence of the acyl chain lengths of acyl-l-carnitines (CnLC) on solubility, surface adsorption and aggregation. Critical micellar concentrations (CMCs) of CnLC were determined by surface tension measurements. Neutron reflection (NR) was used to further examine the structure and composition of the adsorbed CnLC layer. The structural changes of the micellar aggregates under different concentrations of CnLC, pH and ionic strength were determined by dynamic light scattering (DLS) and small angle neutron scattering (SANS). FINDINGS: C12LC is fully soluble over a wide temperature and concentration range. There is however a strong decline of solubility with increasing acyl chain length. The adsorption and aggregation behavior of C14LC was therefore studied at 30 °C and C16LC at 45 °C. The solubility boundaries displayed distinct hysteresis with respect to heating and cooling. The CMCs of C12LC, C14LC and C16LC at pH 7 were 1.1 ± 0.1, 0.10 ± 0.02 and 0.010 ± 0.005 mM, respectively, with the limiting values of the area per molecule at the CMC being 45.4 ± 2, 47.5 ± 2 and 48.8 ± 2 Å2 and the thicknesses of the adsorbed CnLC layers at the air/water interface increasing from 21.5 ± 2 to 22.6 ± 2 to 24.2 ± 2 Å, respectively. All three surfactants formed core-shell spherical micelles with comparable dimensional parameters apart from an increase in core radius with acyl chain length. This study outlines the effects of acyl chain length on the physicochemical properties of CnLCs under different environmental conditions, serving as a useful basis for developing their potential applications.


Subject(s)
Micelles , Surface-Active Agents , Adsorption , Scattering, Small Angle , Surface Tension
13.
ACS Appl Mater Interfaces ; 13(14): 16062-16074, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33797891

ABSTRACT

Gram-negative bacteria are covered by both an inner cytoplasmic membrane (IM) and an outer membrane (OM). Antimicrobial peptides (AMPs) must first permeate through the OM and cell wall before attacking the IM to cause cytoplasmic leakage and kill the bacteria. The bacterial OM is an asymmetric bilayer with the outer leaflet primarily composed of lipopolysaccharides (LPSs) and the inner leaflet composed of phospholipids (PLs). Two cationic α-helical AMPs were designed to target Gram-negative bacteria, a full peptide G(IIKK)3I-NH2 (G3), and a hydrophobic lipopeptide C8-G(IIKK)2I-NH2 (C8G2, with C8 denoting the octanoyl chain). LPS dominates OM functions as the first line of defense against antibiotics, thereby reducing drug susceptibility. This work explores how the two AMPs interact with LPS through several carefully chosen OM models that facilitated measurements from solid-state nuclear magnetic resonance (ss-NMR), small-angle neutron scattering (SANS), and neutron reflectivity (NR). The results revealed that G3 molecules bound preferably to the LPS head region and functioned as bridge molecules to reassemble the dislocated lipids into bilayer stacks. In contrast, C8G2 lipopeptides could quickly penetrate into the central region of the OM to cause direct removal of some membrane lipids. Different structural disruptions implicated different antimicrobial efficacies from these AMPs. The demonstration of the structural features underlying different susceptibilities of the OM to AMPs offers a useful route for the future development of strain-specific AMPs against antimicrobial-resistant pathogens.


Subject(s)
Cell Wall/chemistry , Gram-Negative Bacteria/chemistry , Pore Forming Cytotoxic Proteins/chemistry , Drug Design , Erythrocytes/drug effects , Gram-Negative Bacteria/drug effects , Hemolysis/drug effects , Humans , Lipid Bilayers , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/pharmacology , Protein Conformation
14.
Curr Opin Colloid Interface Sci ; 52: 101417, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33642918

ABSTRACT

Since the outbreak of the COVID-19 pandemic, most countries have recommended their citizens to adopt social distance, hand hygiene, and face mask wearing. However, wearing face masks has not been well adopted by many citizens. While the reasons are complex, there is a general perception that the evidence to support face mask wearing is lacking, especially for the general public in a community setting. Face mask wearing can block or filter airborne virus-carrying particles through the working of colloid and interface science. This paper assesses current knowledge behind the design and functioning of face masks by reviewing the selection of materials, mask specifications, relevant laboratory tests, and respiratory virus transmission trials, with an overview of future development of reusable masks for the general public. This review highlights the effectiveness of face mask wearing in the prevention of COVID-19 infection.

15.
ACS Appl Mater Interfaces ; 12(50): 55675-55687, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33259204

ABSTRACT

Antimicrobial peptides are promising alternatives to traditional antibiotics. A group of self-assembling lipopeptides was formed by attaching an acyl chain to the N-terminus of α-helix-forming peptides with the sequence Cx-G(IIKK)yI-NH2 (CxGy, x = 4-12 and y = 2). CxGy self-assemble into nanofibers above their critical aggregation concentrations (CACs). With increasing x, the CACs decrease and the hydrophobic interactions increase, promoting secondary structure transitions within the nanofibers. Antimicrobial activity, determined by the minimum inhibition concentration (MIC), also decreases with increasing x, but the MICs are significantly smaller than the CACs, suggesting effective bacterial membrane-disrupting power. Unlike conventional antibiotics, both C8G2 and C12G2 can kill Staphylococcus aureus and Escherichia coli after only minutes of exposure under the concentrations studied. C12G2 nanofibers have considerably faster killing dynamics and lower cytotoxicity than their nonaggregated monomers. Antimicrobial activity of peptide aggregates has, to date, been underexploited, and it is found to be a very promising mechanism for peptide design. Detailed evidence for the molecular mechanisms involved is provided, based on superresolution fluorescence microscopy, solid-state nuclear magnetic resonance, atomic force microscopy, neutron scattering/reflectivity, circular dichroism, and Brewster angle microscopy.


Subject(s)
Anti-Infective Agents/chemistry , Lipopeptides/chemistry , Amino Acid Sequence , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Drug Design , Escherichia coli/drug effects , Hemolysis/drug effects , Humans , Lipopeptides/metabolism , Lipopeptides/pharmacology , Liposomes/chemistry , Liposomes/metabolism , Microbial Sensitivity Tests , Microscopy, Fluorescence , Nanofibers/chemistry , Protein Conformation, alpha-Helical , Staphylococcus aureus/drug effects , Surface Tension
16.
ACS Appl Mater Interfaces ; 12(40): 44420-44432, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32909733

ABSTRACT

Molecular dynamics (MD) simulations, stochastic optical reconstruction microscopy (STORM), and neutron reflection (NR) were combined to explore how antimicrobial peptides (AMPs) can be designed to promote the formation of nanoaggregates in bacterial membranes and impose effective bactericidal actions. Changes in the hydrophobicity of the designed AMPs were found to have a strong influence on their bactericidal potency and cytotoxicity. G(IIKK)3I-NH2 (G3) achieved low minimum inhibition concentrations (MICs) and effective dynamic kills against both antibiotic-resistant and -susceptible bacteria. However, a G3 derivative with weaker hydrophobicity, KI(KKII)2I-NH2 (KI), exhibited considerably lower membrane-lytic activity. In contrast, the more hydrophobic G(ILKK)3L-NH2 (GL) peptide achieved MICs similar to those observed for G3 but with worsened hemolysis. Both the model membranes studied by Brewster angle microscopy, zeta potential measurements, and NR and the real bacterial membranes examined with direct STORM contained membrane-inserted peptide aggregates upon AMP exposure. These structural features were well supported by MD simulations. By revealing how AMPs self-assemble in microbial membranes, this work provides important insights into AMP mechanistic actions and allows further fine-tuning of antimicrobial potency and cytotoxicity.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Biocompatible Materials/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Surface-Active Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Biocompatible Materials/chemistry , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Particle Size , Protein Aggregates , Surface Properties , Surface-Active Agents/chemistry
17.
Langmuir ; 36(13): 3531-3539, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32183512

ABSTRACT

In this article, the interaction between a designed antimicrobial peptide (AMP) G(IIKK)3I-NH2 (G3) and four typical conventional surfactants (sodium dodecyl sulfonate (SDS), hexadecyl trimethyl ammonium bromide (C16TAB), polyoxyethylene (23) lauryl ether (C12EO23), and tetradecyldimethylamine oxide (C14DMAO)) has been studied through surface tension measurement and circular dichroism (CD) spectroscopy. The antimicrobial activities of AMP/surfactant mixtures have also been studied with Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus, and the fungus Candida albicans. The cytotoxicity of the AMP/surfactant mixtures has also been assessed with NIH 3T3 and human skin fibroblast (HSF) cells. The surface tension data showed that the AMP/SDS mixture was much more surface-active than SDS alone. CD results showed that G3 conformation changed from random coil, to ß-sheet, and then to α-helix with increasing SDS concentration, showing a range of structural transformation driven by the different interactions with SDS. The antimicrobial activity of G3 to Gram-negative and Gram-positive bacteria decreased in the presence of SDS due to the strong interaction of electrostatic attraction between the peptide and the surfactant. The interactions between G3 and C16TAB, C12EO23, and C14DMAO were much weaker than SDS. As a result, the surface tension of surfactants with G3 did not change much, neither did the secondary structures of G3. The antimicrobial activities of G3 were little affected in the presence of C12EO23, slightly improved by C14DMAO, and clearly enhanced by cationic surfactant C16TAB due to its strong cationic and antimicrobial nature, consistent with their surface physical activities as binary mixtures. Although AMP G3 did not show activity to fungus, the mixtures of AMP/C16TAB and AMP/C14DMAO could kill C. albicans at high surfactant concentrations. The mixtures had rather high cytotoxicity to NIH 3T3 and HSF cells although G3 is nontoxic to cells. Cationic AMPs can be formulated with nonionic, cationic, and zwitterionic surfactants during product development, but care must be taken when AMPs are formulated with anionic surfactants, as the strong electrostatic interaction may undermine their antimicrobial activity.


Subject(s)
Anti-Bacterial Agents , Peptides , Polyethylene Glycols , Surface-Active Agents , Cetrimonium , Humans , Pore Forming Cytotoxic Proteins , Surface Tension , Surface-Active Agents/toxicity
18.
Langmuir ; 36(7): 1737-1744, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32009405

ABSTRACT

The function and properties of peptide-based materials depend not only on the amino acid sequence but also on the molecular conformations. In this paper, we chose a series of peptides Gm(XXKK)nX-NH2 (m = 0, 3; n = 2, 3; X = I, L, and V) as the model molecules and studied the conformation regulation through N-terminus lipidation and their formulation with surfactants. The structural and morphological transition of peptide self-assemblies have also been investigated via transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, and small-angle neutron scattering. With the terminal alkylation, the molecular conformation changed from random coil to ß-sheet or α-helix. The antimicrobial activities of alkylated peptide were different. C16-G3(IIKK)3I-NH2 showed antimicrobial activity against Streptococcus mutans, while C16-(IIKK)2I-NH2 and C16-G3(IIKK)2I-NH2 did not kill the bacteria. The surfactant sodium dodecyl sulfonate could rapidly induce the self-assemblies of alkylated peptides (C16-(IIKK)2I-NH2, C16-G3(IIKK)2I-NH2, C16-G3(VVKK)2V-NH2) from nanofibers to micelles, along with the conformation changing from ß-sheet to α-helix. The cationic surfactant hexadecyl trimethyl ammonium bromide made the lipopeptide nanofibers thinner, and nonionic surfactant polyoxyethylene (23) lauryl ether (C12EO23) induced the nanofibers much more intensively. Both the activity and the conformation of the α-helical peptide could be modulated by lipidation. Then, the self-assembled morphologies of alkylated peptides could also be further regulated with surfactants through hydrophobic, electrostatic, and hydrogen-bonding interactions. These results provided useful strategies to regulate the molecular conformations in peptide-based material functionalization.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Surface-Active Agents/chemistry , Acylation , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/toxicity , Bacillus subtilis/drug effects , Cetrimonium/chemistry , Escherichia coli/drug effects , Mice , NIH 3T3 Cells , Nanofibers/chemistry , Polyethylene Glycols/chemistry , Protein Conformation/drug effects , Protein Multimerization/drug effects , Streptococcus mutans/chemistry
19.
ACS Appl Mater Interfaces ; 11(38): 34609-34620, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31448889

ABSTRACT

Antimicrobial peptides (AMPs) can target bacterial membranes and kill bacteria through membrane structural damage and cytoplasmic leakage. A group of surfactant-like cationic AMPs was developed from substitutions to selective amino acids in the general formula of G(IIKK)3I-NH2, (called G3, a de novo AMP), to explore the correlation between AMP hydrophobicity and bioactivity. A threshold surface pressure over 12 mN/m was required to cause measurable antimicrobial activity and this corresponded to a critical AMP concentration. Greater surface activity exhibited stronger antimicrobial activity but had the drawback of worsening hemolytic activity. Small unilamellar vesicles (SUVs) with specific lipid compositions were used to model bacterial and host mammalian cell membranes by mimicking the main structural determinants of the charge and composition. Leakage from the SUVs of encapsulated carboxyfluorescein measured by fluorescence spectroscopy indicated a negative correlation between hydrophobicity and model membrane selectivity, consistent with measurements of the zeta potential that demonstrated the extent of AMP binding onto model SUV lipid bilayers. Experiments with model lipid membranes thus explained the trend of minimum inhibitory concentrations and selectivity measured from real cell systems and demonstrated the dominant influence of hydrophobicity. This work provides useful guidance for the improvement of the potency of AMPs via structural design, whilst taking due consideration of cytotoxicity.


Subject(s)
Antimicrobial Cationic Peptides , Bacteria/growth & development , Erythrocyte Membrane/metabolism , Materials Testing , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Hemolysis/drug effects , Humans , Lipid Bilayers/chemistry
20.
Biomacromolecules ; 20(9): 3601-3610, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31365246

ABSTRACT

Mixed thermoreversible gels were successfully fabricated by the addition of a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), to fibrillar nanostructures self-assembled from a short peptide I3K. When the temperature was increased above the lower critical solution temperature of the PNIPAM, the molecules collapsed to form condensed globular particles, which acted as cross-links to connect different peptide nanofibrils and freeze their movements, resulting in the formation of a hydrogel. Since these processes were physically driven, such hydrogels could be reversibly switched between the sol and gel states as a function of temperature. As a model peptide, I3K was formulated with PNIPAM to produce a thermoreversible sol-gel system with a transition temperature of ∼33 °C, which is just below the body temperature. The antibacterial peptide of G(IIKK)3I-NH2 could be conveniently encapsulated in the hydrogel by the addition of the solution at lower temperatures in the sol phase and then increasing the temperature to be above 33 °C for gelation. The hydrogel gave a sustained and controlled linear release of G(IIKK)3I-NH2 over time. Using the peptide nanofibrils as three-dimensional scaffolds, such thermoresponsive hydrogels mimic the extracellular matrix and could potentially be used as injectable hydrogels for minimally invasive drug delivery or tissue engineering.


Subject(s)
Acrylic Resins/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Drug Delivery Systems , Hydrogels/pharmacology , Acrylic Resins/chemistry , Antimicrobial Cationic Peptides/chemistry , Humans , Hydrogels/chemistry , Temperature , Thermosensing , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...