Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Front Pharmacol ; 15: 1270661, 2024.
Article in English | MEDLINE | ID: mdl-38659586

ABSTRACT

Background: Bufei Huoxue capsule (BFHX) is widely used for the clinical treatment of chronic obstructive pulmonary disease (COPD) in China. Objectives: The aim of this study is to explore the effects on COPD and the underlying mechanism of BFHX. The process and methods: In this study, we established a COPD mouse model through cigarette smoke (CS) exposure in combination with lipopolysaccharide (LPS) intratracheal instillation. Subsequently, BFHX was orally administrated to COPD mice, and their pulmonary function, lung pathology, and lung inflammation, including bronchoalveolar lavage fluid (BALF) cell count and classification and cytokines, were analyzed. In addition, the anti-oxidative stress ability of BFHX was detected by Western blotting, and the bacterial diversity, abundance, and fecal microbiome were examined using 16S rRNA sequencing technology. Outcome: BFHX was shown to improve pulmonary function, suppress lung inflammation, decrease emphysema, and increase anti-oxidative stress, whereas 16S rRNA sequencing indicated that BFHX can dynamically regulate the diversity, composition, and distribution of the intestinal flora microbiome and regulate the lysine degradation and phenylalanine metabolism of COPD mice. These results highlight another treatment option for COPD and provide insights into the mechanism of BFHX.

2.
ACS Nano ; 18(11): 7796-7824, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456414

ABSTRACT

Sodium-ion batteries (SIBs) are considered as an alternative to and even replacement of lithium-ion batteries in the near future in order to address the energy crisis and scarcity of lithium resources due to the wide distribution and abundance of sodium resources on the earth. The exploration and development of high-performance anode materials are critical to the practical applications of advanced SIBs. Among various anode materials, bimetallic oxides (BMOs) have attracted special research attention because of their abundance, easy access, rich redox reactions, enhanced capacity and satisfactory cycling stability. Although many BMO anode materials have been reported as anode materials in SIBs, very limited studies summarized the progress and prospect of BMOs in practical applications of SIBs. In this review, recent progress and challenges of BMO anode materials for SIBs have been comprehensively summarized and discussed. First, the preparation methods and sodium storage mechanisms of BMOs are discussed. Then, the challenges, optimization strategies, and sodium storage performance of BMO anode materials have been reviewed and summarized. Finally, the prospects and future research directions of BMOs in SIBs have been proposed. This review aims to provide insight into the efficient design and optimization of BMO anode materials for high-performance SIBs.

3.
Animals (Basel) ; 14(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38200897

ABSTRACT

The objective of this study was to investigate the effects of composite alkali-stored spent Hypsizygus marmoreus substrate (SHMS) on carcass quality, rumen fermentation, and rumen microbial diversity in goats. Twenty-four 6-month-old Chuanzhong black goats with similar body weights (20 ± 5 kg) were selected and randomly divided into four groups (n = 6 per group) and received four treatments: 0% (control group, CG); 20% (low-addition group, LG); 30% (moderate-addition group, MG); and 40% (high-addition group, HG) of SHMS-replaced silage corn and oat hay. The experiment lasted for 74 days (including a 14 d adaptation period and a 60 d treatment period). The results of this study showed that MG and HG significantly improved the marble score of goat meat (p < 0.05). The flesh color score significantly increased in each group (p < 0.05). The fat color scores significantly increased in LG and MG (p < 0.05). There were no significant effects on the pH value or shear force of the longissimus dorsi in each group (p > 0.05). The cooking loss in MG was higher than that in CG (p < 0.05). The histidine and tyrosine contents in each group of muscles significantly increased (p < 0.05), with no significant effect on fatty acids (p > 0.05). The rumen pH of MG significantly decreased (p < 0.05), while the total volatile fatty acids (TVFAs) and ammoniacal nitrogen (NH3-N) increased by 44.63% and 54.50%, respectively. The addition of the SHMS altered both the alpha and beta diversities of the rumen microbiota and significant differences in the composition and structure of the four microbial communities. The dominant bacterial phylum in each group were Firmicutes and Bacteroidetes, with Prevotella 1 as the dominant bacterial genus. Correlation analysis revealed that rumen bacteria are closely related to the animal carcass quality and rumen fermentation. In the PICRUSt prediction, 21 significantly different pathways were found, and the correlation network showed a positive correlation between the Prevotella 1 and 7 metabolic pathways, while the C5-branched dibasic acid metabolism was positively correlated with nine bacteria. In summary, feeding goats with an SHMS diet can improve the carcass quality, promote rumen fermentation, and alter the microbial structure. The research results can provide a scientific reference for the utilization of SHMS as feed in the goat industry.

4.
Animals (Basel) ; 14(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38200900

ABSTRACT

The purpose of this study was to study the chemical composition, rumen degradation characteristics, surface attached microbial community and cellulase activity of garlic skin (GS) and Artemisia argyi stalk (AS), in order to explain their feeding value. Four 14-month-old healthy Min Dong male goats with permanent rumen fistula were selected as experimental animals. The rumen degradation characteristics of GS and AS were determined by using the nylon bag method, and the bacterial composition, cellulase activity and their relationship on the surface of the two groups were analyzed with high-throughput sequencing of 16S rRNA gene. The results showed that in GS and AS, the effective degradation rate (ED) values of dry matter (DM) were 42.53% and 37.12%, the ED values of crude protein (CP) were 37.19% and 43.38%, the ED values of neutral detergent fiber (NDF) were 36.83% and 36.23%, and the ED values of acid detergent fiber (ADF) were 33.81% and 34.77%. During rumen degradation, the richness and evenness of bacteria attached to the AS surface were higher. At the phylum level, Bacteroidetes and Firmicutes were always the main rumen bacteria in the two groups. At the genus level, fiber-degrading bacteria such as Prevotella, Treponema, and Ruminococcus showed higher levels in GS (p < 0.05). Compared with GS, the activity of ß-glucosidase (BG enzyme), endo-ß-1,4-glucanase (C1 enzyme), exo-ß-1,4-glucanase (Cx enzyme) and neutral xylanase (NEX enzyme) attached to AS surface showed a higher trend. Correlation analysis showed that the relative abundance of Succinivibrio and Rikenellaceae_RC9_gut_group was positively correlated with the rumen degradability of nutrients in GS, and the relative abundance of Christensenellaceae R-7_group, Succinivibrio and Ruminococcus was positively correlated with the rumen degradability of nutrients in AS. The conclusion of this study shows that AS has more potential to become ruminant roughage than GS. In addition, this study also revealed the relationship between cellulase activity and bacteria, which provided new information for us to better analyze the effects of GS and AS on the rumen of ruminants and provided an important theoretical basis for the development and utilization of agricultural by-products.

5.
J Adv Res ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38211884

ABSTRACT

INTRODUCTION: The prevention and treatment of chronic obstructive pulmonary disease (COPD) is closely tied to antioxidation and anti-inflammation. Phycocyanin (PC) has numerous pharmacological effects, such as antioxidation and anti-inflammation. However, it remains unclear whether PC can play a therapeutic role in COPD. OBJECTIVE: As inflammation and oxidative stress can aggravate COPD, this study is to explore the effect of PC on COPD mice and its mechanisms. METHODS: The COPD mice model was established by exposing them to lipopolysaccharide (LPS) and cigarette smoke (CS); PC was administrated in a concentration of 50 mg/kg for 30 days. On the last day, lung function was measured, and bronchoalveolar lavage fluid (BALF) was obtained and classified for cells. Lung tissue pathological change was analyzed, and organ indices statistics were measured. Based on molecular docking, the mechanism was explored with Western blotting, immunohistochemical, and immunofluorescence in vivo and in vitro. RESULTS: PC significantly ameliorated the pulmonary function of COPD mice and reduced inflammation of the lung (p < 0.05), and hematoxylin and eosin (H&E) staining showed PC depressed lung inflammatory cell accumulation and emphysema. Periodic acid Schiff (PAS) and Masson staining revealed that PC retarded goblet cells metaplasia and collagen deposition (p < 0.05). In addition, in vivo PC regulated Heme oxygenase 1 (HO-1) (p < 0.05) and NAD(P)H dehydrogenase quinone 1 (NQO1) level (p < 0.01) in the lung, as well as NOX2 level in pulmonary macrophages. Molecular docking results indicate that phycocyanobilin (PCB) in PC had a good binding site in Keap1 and NOX2 proteins; the phycocyanobilin-bound phycocyanin peptide (PCB-PC-peptide) was obtained for further studies. In vitro, PCB-PC-peptide could depress the phospho-NF-E2-related factor 2 (p-Nrf2) and NQO1 protein expression in RAW264.7 cells induced by cigarette smoke extract (CSE) (p < 0.05). CONCLUSION: PC exerts beneficial effects on COPD via anti-inflammatory and antioxidative stress, which may be achieved through PCB.

6.
Sci Bull (Beijing) ; 68(23): 2945-2953, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37957068

ABSTRACT

Aqueous proton battery is considered as a promising candidate for the electrochemical energy storage system with the merits of safety, environmental benignity, fast kinetics and low cost. The realization of these advantages relies on the development of suitable and easy-access electrode materials. Herein, micron-sized H2MoO3/Polyaniline (PANI) is developed as a high-rate and stable anode material in proton battery. Contrary to the pseudocapacitive nature of most anode materials, the H2MoO3/PANI presents diffusion-controlled charge storage mechanism with both high capacity and high rate-capability. The H2MoO3/PANI electrode shows a rather high capacity of 268.2 mAh g-1 at 1.0 A g-1, and a surprisingly high rate-capability with ∼50% capacity retention even at an extremely high current density of 200.0 A g-1. Detailed analyses demonstrate the Grotthuss mechanism of ultrafast proton conduction in H2MoO3/PANI. The constructed proton full cell based on H2MoO3/PANI delivers a high energy density of 42.1 Wh kg-1 at 800.0 W kg-1. Impressively, the proton full cell shows fast proton transportation even in the frozen electrolyte, and ∼70% of the room temperature capacity is retained at -20 °C. These excellent proton storage behaviors provide insights into the practical applications of micron-sized electrode materials in proton batteries at low temperatures.

7.
Int Immunopharmacol ; 124(Pt A): 110810, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37625370

ABSTRACT

Liver transplantation is one of the most effective treatments for hepatocellular carcinoma (HCC). The balance between inhibiting immune rejection and preventing tumor recurrence after liver transplantation is the key to determining the long-term prognosis of patients with HCC after liver transplantation. In our previous study, we found that capecitabine (CAP), an effective drug for the treatment of HCC, could exert an immunosuppressive effect after liver transplantation by inducing T cell ferroptosis. Recent studies have shown that ferroptosis is highly associated with autophagy. In this study, we confirmed that the autophagy inducer rapamycin (RAPA) combined with metronomic capecitabine (mCAP) inhibits glutathione peroxidase 4 (GPX4) and promotes ferroptosis in CD4+ T cells to exert immunosuppressive effects after rat liver transplantation. Compared with RAPA or mCAP alone, the combination of RAPA and mCAP could adequately reduce liver injury in rats with acute rejection after transplantation. The CD4+ T cell counts in peripheral blood, spleen, and transplanted liver of recipient rats significantly decreased, and the oxidative stress level and ferrous ion concentration of CD4+ T cells significantly increased in the combination group. In vitro, the combination of drugs significantly promoted autophagy, decreased GPX4 protein expression, and induced ferroptosis in CD4+ T cells. In conclusion, the autophagy inducer RAPA improved the mCAP-induced ferroptosis in CD4+ T cells. Our results support the concept of ferroptosis as an autophagy-dependent cell death and suggest that the combination of ferroptosis inducers and autophagy inducers is a new research direction for improving immunosuppressive regimens after liver transplantation.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Liver Transplantation , Humans , Rats , Animals , Sirolimus/therapeutic use , Sirolimus/pharmacology , T-Lymphocytes , Capecitabine/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/drug therapy , Liver Neoplasms/surgery , Neoplasm Recurrence, Local , CD4-Positive T-Lymphocytes
8.
Adv Mater ; 35(38): e2300359, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36917652

ABSTRACT

Sodium-ion batteries (SIBs) have attracted tremendous attentions in recent years due to the abundance and wide distribution of Na resource on the earth. However, SIBs still face the critical issues of low energy density and unsatisfactory cyclic stability at present. The enhancement of electrochemical performance of SIBs depends on comprehensive and precise understanding of the underlying sodium storage mechanism. Although extensive transmission electron microscopy (TEM) investigations have been performed to reveal the sodium storage property and mechanism of SIBs, a dedicated review on the in situ TEM investigations of SIBs has not been reported. In this review, recent progress in the in situ TEM investigations on the morphological, structural, and chemical evolutions of cathode materials, anode materials, and solid-electrolyte interface during the sodium storage of SIBs is comprehensively summarized. The detailed relationship between structure/composition of electrode materials and electrochemical performance of SIBs has been clarified. This review aims to provide insights into the effective selection and rational design of advanced electrode materials for high-performance SIBs.

9.
Food Funct ; 14(1): 240-249, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36484324

ABSTRACT

In recent years, the effect of lipid metabolism on health has attracted more and more attention. Ginseng is a traditional Chinese herbal medicine in China and is widely used as food in Asia. Ginsenoside Rb1 (Gs-Rb1) is the most abundant ingredient in ginsenoside, which has a variety of biological activities. In this study, we found that Gs-Rb1 can reduce lipid accumulation in mice and HepG2 cells induced by a high-fat diet (HFD) and palmitic acid (PA). At the same time, we also found that Gs-Rb1 could stimulate the autophagic flux of HFD-fed mice and PA-treated HepG2 cells, and it is further verified by adding the autophagy activator rapamycin (Rapa) and autophagy inhibitor chloroquine (CQ). Furthermore, we found that Gs-Rb1 promoted the nucleus translocation of the transcription factor EB (TFEB) and the target role of miR-128, thus stimulating autophagic flux. Therefore, our results showed that Gs-Rb1 enhanced the transcription of TFEB and its downstream lysosome-related genes by inhibiting miR-128, improved the degradation ability of lysosomes to autophagosomes, and then promoted autophagic lipid degradation.


Subject(s)
Ginsenosides , MicroRNAs , Mice , Animals , Ginsenosides/pharmacology , Ginsenosides/metabolism , Autophagy , MicroRNAs/genetics , MicroRNAs/metabolism , Lipids/pharmacology , Lysosomes/metabolism
10.
Opt Express ; 30(1): 664-675, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35201239

ABSTRACT

To increase the transmission capacity, ultra-wideband wavelength-division multiplexing (UWB WDM) has been exploited to enlarge the spectral range. However, inter-channel stimulated Raman scattering (ISRS) results in power transition from high-frequency channels to low-frequency channels in wideband scenarios, which degrades the Q-factor of signals. Hence, we modify the optimization method of power control by applying the simulated annealing (SA) algorithm to search for the optimal power slopes and offsets of three bands to construct an optimum distribution of launch powers over channels. High transmission capacity can be reached by carrying 384 channels (96+96+192) in the C+L+S band with the consideration of dynamic Raman gain and channel-dependent parameters. We show that compared to using brute-force searching (BFS), a comparable and even higher transmission capacity can be achieved by the SA algorithm. Meanwhile, the searching speed of the SA algorithm is much faster. Also, different optimizing strategies can be selected to balance the trade-off between capacity and spectral flatness. This method can be used for designing arbitrary optical fiber UWB WDM systems before practical testing.

11.
J Food Sci ; 86(12): 5503-5515, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34812491

ABSTRACT

In recent years, foodborne pollutants have become a hot issue in the field of food safety. 3-chloro-1,2-propanediol (3-MCPD) is a widely existing food contaminant. In our previous study, it was confirmed that 3-MCPD can block autophagic flux by inhibiting lysosomal function, thus causing liver injury. Ginseng is a traditional Chinese herbal medicine that contains a variety of bioactive ingredients, among which ginsenoside Rb1 (Gs-Rb1) is the most abundant. In this study, we aim to use Gs-Rb1 to improve 3-MCPD-induced autophagic flux blockage to alleviate liver injury. First, a nontoxic dose of Gs-Rb1 was identified by screening with the MTT method in which Gs-Rb1was added to HepG2 cells and co-treated with 3-MCPD. We found that Gs-Rb1 effectively enhanced the cell activity inhibited by 3-MCPD. Meanwhile, apoptosis data showed that Gs-Rb1 significantly alleviated the apoptosis of HepG2 cells induced by 3-MCPD. Subsequently, we found that Gs-Rb1 could alleviate autophagic flux blockage caused by 3-MCPD in a dose-dependent manner by detecting autophagy-related protein levels and transfecting mRFP-GFP-LC3 adenovirus. On this basis, we used Western blotting and qPCR to explore whether miR-128 was involved in the alleviation effect of Gs-Rb1 on autophagic flux blockade induced by 3-MCPD. The results showed that Gs-Rb1 inhibited the expression of miR-128 and promoted the nuclear expression and target gene transcription of TFEB. Finally, the findings were confirmed by using a hsa-miR-128 inhibitor and mimic. We found that hsa-miR-128 inhibitor alleviated the autophagic flux blockage and apoptosis caused by 3-MCPD and Gs-Rb1 also had a certain alleviation effect on the autophagic flux blockage and apoptosis caused by hsa-miR-128 mimic. This study elaborated the mechanism by which Gs-Rb1 alleviates hepatotoxicity induced by foodborne 3-MCPD by stimulating autophagic flux via miR-128-targeted TFEB, which provides a reliable theoretical basis and target for the use of natural substances to reduce the harm of food processing pollutants on the human body. PRACTICAL APPLICATION: We found that natural ginsenoside Rb1 can alleviate liver injury induced by 3-MCPD(a toxic substance found in foods such as refined vegetable oil, soy sauce, and baby milk powder), which is conducive to the development and utilization of ginseng and has practical significance for the prevention of foodborne liver injury.


Subject(s)
alpha-Chlorohydrin , Ginsenosides , Humans , Liver , Retinoblastoma Binding Proteins , Ubiquitin-Protein Ligases , alpha-Chlorohydrin/toxicity
12.
Food Funct ; 12(20): 9583-9606, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34542140

ABSTRACT

Ferroptosis is a recently defined type of regulated cell death caused by an excess iron-dependent accumulation of lipid peroxides and is morphologically and biochemically distinct from other types of cell death. Notably, Nrf2 is identified to exquisitely modulate ferroptosis due to its ability to target a host of ferroptosis cascade genes, which places Nrf2 in the pivotal position of ferroptosis. This paper reviews the regulation effect of Nrf2 on ferroptosis, different activation mechanisms of Nrf2 as well as the relevance of the Nrf2-ferroptosis axis in diseases, and finally summarizes foods with beneficial effects in ferroptosis via the Nrf2 pathway and aims to serve as a reference for follow-up studies of food functions related to Nrf2, ferroptosis, and human health.


Subject(s)
Ferroptosis/drug effects , Functional Food , NF-E2-Related Factor 2/metabolism , Humans , Signal Transduction
13.
Opt Express ; 29(10): 15852-15864, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985277

ABSTRACT

We proposed a two-dimensional vector displacement sensor with the capability of distinguishing the direction and amplitude of the displacement simultaneously, with improved performance assisted by random forest, a powerful machine learning algorithm. The sensor was designed based on a seven-core multi-core fiber inscribed with Bragg gratings, with a displacement direction range of 0-360° and the amplitude range related to the length of the sensor body. The displacement information was obtained under a random circumstance, where the performances with theoretical model and random forest model were studied. With the theoretical model, the sensor performed well over a shorter linear range (from 0 to 9 mm). Whereas the sensor assisted with random forest algorithm exhibits better performance in two aspects, a wider measurement range (from 0 to 45 mm) and a reduced measurement error of displacement. Mean absolute errors of direction and amplitude reconstruction were decreased by 60% and 98%, respectively. The proposed displacement sensor shows the possibility of machine learning methods to be applied in point-based optical systems for multi-parameter sensing.

14.
Toxicol Mech Methods ; 31(6): 450-456, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33870866

ABSTRACT

Aflatoxin B1 (AFB1) is a hazard food pollutant and the most toxic one of all the aflatoxins. It is mainly metabolized in the liver and exerts strong hepatotoxicity and carcinogenesis. Autophagy is an important biological process to maintain the homeostasis of intracellular environment. But the role of autophagy in AFB1-exposured hepatotoxicity remains unclear. The objective of this study was to explore the effect of AFB1 on autophagy flux and its potential mechanisms in HepG2 cells. The data showed AFB1 with no-observed adverse effect level (NOAEL) induced the accumulation of autophagosomes by detecting the level of LC3 and MDC staining. Subsequent findings revealed that autophagosome accumulation was caused by the inhibition of autophagy flux by transfection mRFP-GFP-LC3 adenovirus in the presence of autophagy inhibitor 3-MA and CQ. Further, we investigated lysosomal pH by Acridine orange (AO) and Lysotracker Red (LTR) staining and found that AFB1 exposure caused lysosomal alkalinization. These results indicated AFB1 with NOAEL could inhibit autophagy flux by inducing lysosomal alkalinization. Our study was helpful to further explain early hepatotoxicity mechanism of AFB1.


Subject(s)
Autophagy , Aflatoxin B1/toxicity , Autophagosomes , Hep G2 Cells , Humans , Lysosomes
15.
BMC Cancer ; 21(1): 329, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33785008

ABSTRACT

BACKGROUND: Breast cancer is one of the main malignant tumors that threaten the lives of women, which has received more and more clinical attention worldwide. There are increasing evidences showing that the immune micro-environment of breast cancer (BC) seriously affects the clinical outcome. This study aims to explore the role of tumor immune genes in the prognosis of BC patients and construct an immune-related genes prognostic index. METHODS: The list of 2498 immune genes was obtained from ImmPort database. In addition, gene expression data and clinical characteristics data of BC patients were also obtained from the TCGA database. The prognostic correlation of the differential genes was analyzed through Survival package. Cox regression analysis was performed to analyze the prognostic effect of immune genes. According to the regression coefficients of prognostic immune genes in regression analysis, an immune risk scores model was established. Gene set enrichment analysis (GSEA) was performed to probe the biological correlation of immune gene scores. P < 0.05 was considered to be statistically significant. RESULTS: In total, 556 immune genes were differentially expressed between normal tissues and BC tissues (p < 0. 05). According to the univariate cox regression analysis, a total of 66 immune genes were statistically significant for survival risk, of which 30 were associated with overall survival (P < 0.05). Finally, a 15 immune genes risk scores model was established. All patients were divided into high- and low-groups. KM survival analysis revealed that high immune risk scores represented worse survival (p < 0.001). ROC curve indicated that the immune genes risk scores model had a good reliability in predicting prognosis (5-year OS, AUC = 0.752). The established risk model showed splendid AUC value in the validation dataset (3-year over survival (OS) AUC = 0.685, 5-year OS AUC = 0.717, P = 0.00048). Moreover, the immune risk signature was proved to be an independent prognostic factor for BC patients. Finally, it was found that 15 immune genes and risk scores had significant clinical correlations, and were involved in a variety of carcinogenic pathways. CONCLUSION: In conclusion, our study provides a new perspective for the expression of immune genes in BC. The constructed model has potential value for the prognostic prediction of BC patients and may provide some references for the clinical precision immunotherapy of patients.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Profiling/methods , Nomograms , Female , Humans , Middle Aged , Prognosis , Risk Factors
16.
J Chem Inf Model ; 61(3): 1095-1104, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33683885

ABSTRACT

A dataset is the basis of deep learning model development, and the success of deep learning models heavily relies on the quality and size of the dataset. In this work, we present a new data preparation protocol and build a large fragment-based dataset Frag20, which consists of optimized 3D geometries and calculated molecular properties from Merck molecular force field (MMFF) and DFT at the B3LYP/6-31G* level of theory for more than half a million molecules composed of H, B, C, O, N, F, P, S, Cl, and Br with no larger than 20 heavy atoms. Based on the new dataset, we develop robust molecular energy prediction models using a simplified PhysNet architecture for both DFT-optimized and MMFF-optimized geometries, which achieve better than or close to chemical accuracy (1 kcal/mol) on multiple test sets, including CSD20 and Plati20 based on experimental crystal structures.


Subject(s)
Deep Learning , Models, Molecular
17.
ACS Appl Mater Interfaces ; 12(52): 58082-58093, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33332082

ABSTRACT

The mechanism of how the solvent type influences photovoltaic performance and thermal stability of non-fullerene organic solar cells remains unexplored. In this article, the well-known PTB7-Th was selected as a donor, while F8IC was used as an acceptor. The PTB7-Th:F8IC processed from chloroform (CF) exhibited a superiorly higher power conversion efficiency (PCE) of 10.5%, in contrast to the specimen processed from chlorobenzene (CB) of 6.8%. In addition, upon thermal annealing at 160 °C for 120 min, the device processed from CF was more stable than that processed from CB. The incorporation of perylene diimide derivative TBDPDI-C11, serving as the third additive, could also obviously improve the PCE value and thermal stability of PTB7-Th:F8IC processed from CB. According to ultraviolet spectroscopy, atomic force microscopy, transmission electron microscopy, and grazing incidence wide-angle X-ray scattering analyses, the enhanced photovoltaic performance and thermal stability are mainly attributed to formation of PTB7-Th nanofibers and appropriate aggregation of F8IC. The interaction free energy calculated using water and diiodomethane contact angles reveals that PTB7-Th well disperses in CB and tends to aggregate in CF, while F8IC aggregates strongly in CB. The preaggregation matching of the donor and acceptor in solution is essential for the optimization of morphology, efficiency, and thermal stability. The findings in this article could provide useful guidelines to fabricate efficient and thermally stable organic solar cells simply by analyzing the surface energy of components processed from different solvents.

18.
Opt Express ; 28(24): 36953-36971, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379778

ABSTRACT

As one of the key indicators of signal quality in fiber communication systems, optical signal-to-noise ratio (OSNR) needs to be accurately monitored to ensure reliable network planning, operation, and reconfiguration. OSNR monitoring techniques considering only accumulated amplified spontaneous emission (ASE) noise are no longer suitable for dispersion unmanaged long-haul and dense wavelength division multiplexing (WDM) systems, where the contribution of fiber nonlinearity to total SNR cannot be neglected. In this paper, we propose a modulation-format-transparent, accurate joint linear and nonlinear noise monitoring scheme based on calculation of correlation between two spectral components at the upper and lower sideband of the signal spectrum. Different characteristics of flat linear noise spectrum and non-flat nonlinear noise spectrum are used to distinguish the influences on the correlation value from both noise sources. Simulation results show that the proposed scheme can accurately monitor SNRlinear and SNRnonlinear within a wide launch power range from -5 dBm to 5 dBm per channel for multi-channel WDM systems with a 915-km single mode fiber (SMF) link. The performance of the proposed scheme is further experimentally verified in up-to-7 channel WDM systems over a 915 km SMF link.

19.
Ophthalmic Physiol Opt ; 40(5): 660-668, 2020 09.
Article in English | MEDLINE | ID: mdl-32776575

ABSTRACT

PURPOSE: To determine whether monocularly- and binocularly-induced spherical and meridional blur and aniseikonia had similar effects on stereopsis thresholds. METHODS: Twelve participants with normal binocular vision viewed McGill modified random dot stereograms to determine stereoacuities in a four-alternative forced-choice procedure. Astigmatism was induced by placing trial lenses in front of the eyes. Twenty-three conditions were used, consisting of zero (no lens), +1 D and +2 D spheres and cylinders at axes 180, 45 and 90 in front of the right eye, and the following binocular combinations of both lens powers: R × 180/L × 180, R × 45/L × 45, R × 90/L × 90, R sphere/L sphere, R × 180/L × 90, R × 45/L × 135, R × 90/L × 180. Aniseikonia was induced by placing magnifying lenses in front of the eyes. Twenty-three conditions were used, consisting of zero, 6% and 12% overall magnification and both magnifications at axes 180, 45 and 90 in front of the right eye only, and the following binocular combinations using 3% and 6% lenses: R × 90/L × 90, R × 45/L × 45, R × 180/L × 180, R overall/L overall, R × 90/L × 180, R × 45/L × 135, and R × 180/L × 90. RESULTS: Stereopsis losses for binocular blur effects with parallel axes (non-anisometropic) were the same as for monocular blur effects of the same axes, and these were strongly dependent on axis (spherical blur and ×90 had the greatest effects). Binocular blur effects with orthogonal axes had greater effects than with parallel axes, with the axis combination of the former having no effect (e.g. R × 90/L × 180 was similar to R × 45/L × 135). For induced aniseikonia, splitting the magnifications between the eyes improved stereopsis slightly, and the effects were not dependent on axis. CONCLUSION: Binocular blur affects stereopsis similarly to monocular meridional blur if axes in the two eyes are parallel, whereas the effect is greater if the axes are orthogonal. In meridional aniseikonia, splitting magnification between the right and left lenses produces a small improvement in stereopsis that is independent of axis direction and right/left combination.


Subject(s)
Aniseikonia/physiopathology , Depth Perception/physiology , Refraction, Ocular/physiology , Vision, Binocular/physiology , Visual Acuity , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult
20.
Food Chem Toxicol ; 144: 111575, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32702505

ABSTRACT

3-chloro-1, 2-propanediol (3-MCPD) is a well-known contaminant that was produced in the thermal processing of food. Dietary intake represents the greatest source of exposure to 3-MCPD. Autophagy is an important catabolic pathway that plays an important role in liver physiological function. Evidence suggests that 3-MCPD exposure causes toxicity in liver, but the mechanism remains unknown. Here, we explored the effects of 3-MCPD on autophagic flux and traced the molecular mechanism in HepG2 cells. The data showed 3-MCPD exposure promoted the accumulation of autophagosomes in HepG2 cells. Subsequently, by detected te expression of LC3-Ⅱ and P62 and transfection of mRFP-GFP-LC3 adenovirus, we found that the accumulation of autophagosomes was caused by inhibition of autophagic flux. After that, we investigate lysosomal function and found that 3-MCPD induced lysosomal alkalinization. Further, we detected the expression of TFEB, which is a key nuclear transcription factor in control of lysosome biogenesis and function. We found that 3-MCPD inhibited the nuclear expression of TFEB and mRNA levels of some target genes of TFEB. In order to further verify the role of TFEB in autophagic flux blockage in HepG2 cells induced by 3-MCPD, we overexpressed TFEB by transfection with adenovirus and found that both autophagy inhibition and lysosomal alkalization induced by 3-MCPD were alleviated. These results suggested that 3-MCPD could induce the autophagic flux blockage in HepG2 cells. The possible mechanism was due to the destruction of lysosomal function.


Subject(s)
Autophagy/drug effects , Lysosomes/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Hep G2 Cells , Humans , Lysosomes/physiology , Transcription, Genetic/drug effects , alpha-Chlorohydrin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...