Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 341: 140040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37673188

ABSTRACT

Chronic kidney disease (CKD) is an inflammatory disease characterized by the deterioration of renal function, which imposes a significant burden on the healthcare system. In the recent decades, the ageing of the population and the increase of ozone pollution have accelerated. However, epidemiological associations between long-term ozone exposure and renal function in susceptible populations are understudied. In this study, we aimed to investigate the association of 1 y ozone exposure with renal function among the older adults in Xiamen City, China. We recruited 6024 eligible participants with a median age of 65.00 years, estimated their ozone exposure data, and collected questionnaires on demographic status and lifestyle factors as well as information on healthcare access. A generalized linear model was used to assess the association. An increase of 10 µg/m3 of 1 y ozone exposure was negatively associated with the estimated glomerular filtration rate (eGFR) [-3.12 (95% CI: -4.76, -1.48)]. The associations were stronger in men, non-smokers, and those with hypertension or T2DM. Clinical indicators of high-density lipoprotein, low-density lipoprotein, triglycerides, and total cholesterol were the main mediators to regulate the ozone-renal function association. Our results suggested that long-term ozone exposure is a potential risk factor for renal function in Chinese middle-aged and elderly adults.


Subject(s)
East Asian People , Environmental Exposure , Ozone , Renal Insufficiency, Chronic , Aged , Humans , Male , Middle Aged , Aging , Asian People , Glomerular Filtration Rate , Ozone/toxicity
2.
Polymers (Basel) ; 14(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36559903

ABSTRACT

Caffeic acid (CA) was treated on the surface of polyester fabric (PET), and Fe2+ was used as an intermediate to form chelates with CA to increase the roughness of the polyester surface. With the addition of n-octadecyl mercaptan (SH), the mercapto group reacted with the carbon-carbon double bond of CA on the PET surface through enol click chemical reaction. Meanwhile, CA was polymerized under UV radiation, and thus CA-Fe-SH-PET was prepared. The introduction of SH with a long carbon chain reduced the surface energy of the PET, in order to endow the polyester fabric with a superhydrophobic/lipophilic function. Combined with XPS and FTIR tests, the new carbon-carbon double bond's binding energy and vibration peak were found on the fabric surface, indicating that CA was adsorbed on the PET fabric's surface. After adding SH, the double bond disappeared, demonstrating that SH and CA occurred a click chemical reaction and were grafted onto the PET fabric's surface. The water contact angle (WCA) of CA-Fe-SH-PET was about 156 ± 0.6°, and the scrolling angle (SA) was about 3.298°. The results showed that the modified polyester had a robust superhydrophobic stability in washing, mechanical friction, sun aging, seawater immersion, organic reagent, and acid-base erosion derived from the good adhesion of polymerized CA (PCA). At the same time, the modified polyester fabric had good self-cleaning, antifouling, and oil-water separation performance. It was found that the CA-Fe-SH-PET fabric had unique photothermal conversion characteristics, which can convert the absorbed ultraviolet light into thermal energy, providing a local warming effect due to rapid heating and improving the transmission speed of heavy oil (engine oil and diesel). The CA-Fe-SH-PET fabric can further prevent the transmission of ultraviolet rays, and the UV resistance of CA-Fe-SH-PET fabric is far higher than the UV resistance standard. The preparation method is simple, fast, efficient, and environmentally friendly, and it has better a potential application value in the oil-water separation field.

SELECTION OF CITATIONS
SEARCH DETAIL
...