Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Omega ; 6(44): 29781-29787, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34778651

ABSTRACT

The geometrical dependence of humidity sensors on sensing performance has not been quantitatively outlined. Furthermore, the etching effect on humidity sensors is still elusive due to the difficulty in separating the effects of the geometrical change and etching-induced porosity on the overall performance. Here, we use COMSOL Multiphysics to perform a numerical study of a capacitive graphene oxide (GO) humidity sensor, with emphasis on the dimensions and etching effect on their sensing performance. GO is a useful and promising material in detecting humidity because of its selective superpermeability to water molecules. The mechanism of improved sensing performance of the etched humidity sensors is discussed in terms of the morphological profile and the effective permittivity including the etching-induced porosity effect. Our study shows that as compared to the unetched sensors, isotropic etching achieves the lowest response time of 1.011 s at 15.75% porosity, while vertical etching achieves the highest capacitance sensitivity of 0.106 fF/RH %.

2.
Opt Express ; 29(2): 2065-2076, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726407

ABSTRACT

Several biological membranes have been served as scattering materials of random lasers, but few of them include natural photonic crystals. Here, we propose and demonstrate a facile approach to fabricating high-performance biological photonic crystal random lasers, which is cost-effective and reproducible for mass production. As a benchmark, optical and lasing properties of dye-coated Lepidoptera wings, including Papilio ulysses butterfly and Chrysiridia rhipheus moth, are characterized and show a stable laser emission with a superior threshold of 0.016 mJ/cm2, as compared to previous studies. To deploy the proposed devices in practical implementation, we have applied the as-fabricated biological devices to bright speckle-free imaging applications, which is a more sustainable and more accessible imaging strategy.


Subject(s)
Butterflies/anatomy & histology , Moths/anatomy & histology , Wings, Animal/diagnostic imaging , Animals , Computer-Aided Design , Crystallization/methods , Crystallography/methods , Lasers , Light , Microscopy, Electron, Scanning , Models, Biological , Optics and Photonics , Scattering, Radiation , Surface Properties
3.
Sci Rep ; 11(1): 2430, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510303

ABSTRACT

Random lasers had been made by some biomaterials as light scattering materials, but natural photonic crystals have been rarely reported as scattering materials. Here we demonstrate the ability of natural photonic crystals to drive laser actions by sandwiched the feathers of the Turquoise-Fronted Amazon parrot and dye between two plastic films. Parrot feathers comprise abundant photonic crystals, and different color feathers compose of different ratios of the photonic crystal, which directly affect the feather reflectance. In this study, the multi-reflection scattering that occurred at the interface between the photonic crystal and gain media efficiently reduce the threshold; therefore, the more photonic crystal constitutes in the feathers; the lower threshold can be obtained. The random lasers can be easily made by the integration of bird feather photonic crystals and dye with a simple and sustainable manufacturing approach.


Subject(s)
Feathers/anatomy & histology , Lasers , Optics and Photonics , Parrots/anatomy & histology , Animals , Crystallization , Feathers/ultrastructure , Spectroscopy, Fourier Transform Infrared
4.
Soft Matter ; 16(29): 6841-6849, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32638816

ABSTRACT

Fluid-solid interaction in porous materials is of tremendous importance to earth, space, energy, environment, biological, and medical applications. High-resolution 3D printing enables efficient fabrication of porous microfluidic devices with complicated pore-throat morphology, but lacking desired surface functionality. In this work, we propose a novel approach to additively fabricate functional porous devices by integrating micro-3D printing and solution-based internal coating. This approach is successfully applied to create energy/environment-orientated porous micromodels that replicate the µCT-captured porous geometry and natural mineralogy of carbonate rock. The functional mineral coating in a 3D-printed porous scaffold is achieved by seeding calcite nanoparticles along the inner surface and enabling in situ growth of calcite crystals. For conformal and stable coating in confined pore spaces, we manage to control the wetting and capillarity effects during fabrication: (i) capillarity-enhanced nanoparticle immobilization for forming an adhered seeding layer; (ii) capillary pore-throat blockage mitigation for uniform crystal growth. These transparent micromodels are then used to directly image and characterize microscopic fluid dynamics including wettability-dependent fluid propagation and capillarity-held phase transition processes. The proposed approach can be readily tailored with on-demand-designed scaffold geometry and appropriate coating recipe to fit in many other emerging applications.

5.
Rev Sci Instrum ; 91(2): 023907, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113390

ABSTRACT

We demonstrate that surfaces presenting heterogeneous and atomically flat domains can be directly and rapidly discriminated via robust intensive quantifiables by exploiting one-pass noninvasive methods in standard atomic force microscopy (AFM), single ∼2 min passes, or direct force reconstruction, i.e., ∼103 force profiles (∼10 min collection time), allowing data collection, interpretation, and presentation in under 20 min, including experimental AFM preparation and excluding only sample fabrication, in situ and without extra experimental or time load. We employ a misfit SnTiS3 compound as a model system. Such heterostructures can be exploited as multifunctional surface systems and provide multiple support sites with distinguishable chemical, mechanical, or opto-electronic distinct properties. In short, they provide an ideal model system to exemplify how current AFM methods can significantly support material discovery across fields.

6.
Phys Chem Chem Phys ; 22(7): 4130-4137, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32037423

ABSTRACT

Non-monotonic behavior has been observed in the optoelectronic properties of ZnO thin films as doped with Hf (HZO). Here we propose that two competing mechanisms are responsible for such behaviour. Specifically, we propose that provided two crystal orientations dominate film growth, only one of them might be responsible for direct Hf substitution. Nonmonotonic behaviour is expected at once by considering that preferential growth of the crystal that allows for direct Hf substitution is inhibited by Hf concentration in the manufacturing process. This inhibition would also be a thermodynamic consequence of Hf substitution. Maxima in Hf substitution is thus reached at a point where enough crystals exhibit the preferential orientation, and where enough Hf is present on the surface for substitution. Outside this optimum scenario, Hf substitution can only decrease. We interpret the surface phenomena by discussing surface energy and the van der Waals forces as measured experimentally by means of atomic force microscopy.

7.
Nanoscale ; 11(16): 7944-7951, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30968091

ABSTRACT

In this work, we study the surface energy of monolayer, bilayer and multilayer graphene coatings, produced through exfoliation of natural graphite flakes and chemical vapor deposition. We employ bimodal atomic force microscopy and micro-Raman spectroscopy for high spatial resolution and large area scanning of force of adhesion on the regions of the graphene/SiO2 surface with different graphene layers. Our measurements show that the interface conditions between graphene and SiO2 dominate the experimentally observed graphene surface energy. This finding sheds new light on the controversy surrounding graphene transparency studies. By separating the surface energy into polar and non-polar interactions, our findings suggest that monolayer graphene is nearly van der Waals opaque but partially transparent (near 60%) to polar interactions, which is further supported by characterizing graphene on the copper surface and two levels of density functional theory simulation. In addition to providing quantitative insight into the surface interactions of complicated graphene coatings, this work demonstrates a new route to nondestructively monitor the interface between graphene and coated substrates.

8.
Langmuir ; 34(41): 12335-12343, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30244581

ABSTRACT

Vertical stacking of monolayers via van der Waals (vdW) assembly is an emerging field that opens promising routes toward engineering physical properties of two-dimensional materials. Industrial exploitation of these engineering heterostructures as robust functional materials still requires bounding their measured properties so as to enhance theoretical tractability and assist in experimental designs. Specifically, the short-range attractive vdW forces are responsible for the adhesion of chemically inert components and are recognized to play a dominant role in the functionality of these structures. Here, we reliably quantify the strength of ambient vdW forces in terms of an effective Hamaker coefficient for chemical vapor deposition-grown graphene and show how it scales by a factor of two or three from single to multiple layers on standard supporting surfaces such as copper or silicon oxide. Furthermore, direct measurements on freestanding graphene provide the means to discern the interplay between the vdW potential of graphene and its supporting substrate. Our results demonstrated that the underlying substrates could be controllably exploited to enhance or reduce the vdW force of graphene surfaces. We interpret the physical phenomena in terms of a Lifshitz theory-based analytical model.

9.
Phys Chem Chem Phys ; 20(35): 22636-22644, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30131998

ABSTRACT

The surface wettability of graphite has gained a lot of interest in nanotechnology and fundamental studies alike, but the types of adsorptions that dominate its time resolved surface property variations in ambient environment are still elusive. Prediction of the intrinsic surface wettability of graphite from first-principles simulations offers an opportunity to clarify the overall evolution. In this study, by combining experimental temporal Fourier transform infrared spectroscopy, atomic force microscopy (AFM), and static contact angle measurements with density functional theory (DFT)-predicted contact angles and DFT AFM force simulations, we provide conclusive evidence to demonstrate the role played by water adsorption in the evolution of surface properties of aged graphite in ambient air. Moreover, this study has the merit of linking DFT-predicted adhesive energy at the solid/liquid interface and cohesive energy at the liquid/liquid interface with the DFT AFM-predicted force of adhesion through the Young-Dupre equation. This establishes the basis of the quantum surface wettability theory by combining two independent atomic-level quantum physics simulation methodologies.

10.
J Phys Chem A ; 122(38): 7768-7773, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30008220

ABSTRACT

The wetting behavior of homogeneous systems is now well understood at the macroscopic scale. However, this understanding offers little predictive power regarding wettability when mesoscopic chemical and morphological heterogeneities come into play. The fundamental interest in the effect of heterogeneity on wettability is derived from its high technological relevance in several industries, including the petroleum industry where wettability is recognized as a key determinant of the overall efficiency of the water-flooding-based enhanced oil recovery process. Here, we demonstrate the use of the atomic force microscopy force curve measurements to distinguish the roles of chemistry and morphology in the wetting properties of rock formations, thus providing a clear interpretation and deeper insight into the wetting behavior of heterogeneous formations. Density functional theory calculations further prove the versatility of our approach by establishing benchmarks on ideal surfaces that differ in chemistry and morphology in a predefined manner.

11.
J Phys Chem Lett ; 8(21): 5309-5316, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28985077

ABSTRACT

Prediction of intrinsic surface wettability from first-principles offers great opportunities in probing new physics of natural phenomena and enhancing energy production or transport efficiency. We propose a general quantum mechanical approach to predict the macroscopic wettability of any solid crystal surfaces for different liquids directly through atomic-level density functional simulation. As a benchmark, the wetting characteristics of calcite crystal (10.4) under different types of fluids (water, hexane, and mercury), including either contact angle or spreading coefficient, are predicted and further validated with experimental measurements. A unique feature of our approach lies in its capability of capturing the interactions among various polar fluid molecules and solid surface ions, particularly their charge density difference distributions. Moreover, this approach provides insightful and quantitative predictions of complicated surface wettability alteration problems and wetting behaviors of liquid/liquid/solid triphase systems.

12.
Article in Chinese | MEDLINE | ID: mdl-23012964

ABSTRACT

Water conservancy projects combined with schistosomiasis prevention and control are crucial measures to change the habitats of Oncomelania hupensis and are helpful for schistosomiasis control. In this paper, the epidemic characteristics of O. hupensis in lake regions are elaborately analyzed. Also, the specialty problems and applications of the different projects in lake regions are exhaustively discussed. According to the above analysis, some measures and improvements are propounded to deal with these problems.


Subject(s)
Conservation of Natural Resources , Rivers/parasitology , Schistosomiasis/prevention & control , Animals , Humans , Lakes/parasitology
13.
Article in Chinese | MEDLINE | ID: mdl-22164628

ABSTRACT

OBJECTIVE: To understand the trend of Oncomelania hupensis snail distribution in Yangtze River valley of Anhui Province so as to provide an evidence for making out schistosomiasis prevention and control strategies in the future. METHODS: The snail data from 1998 to 2009 of the Yangtze River valley in Anhui Province were collected including the snail area, newly occurred and re-occurred snail areas, densities of snails and infected snails, etc., and the trend and influence factors were analyzed. RESULTS: With several fluctuations, the snail area showed a trend of declining in general after the devastating summer flooding in 1998. From 1998 to 2009, 3 peaks of newly occurred snail areas appeared in 1998, 2004 and 2006 and 2 peaks of reoccurred snail areas appeared in 1998 and 2004. The densities of living snails and infected snails were more severe in banks of the Yangtze River than in islets of the Yangtze River. During 12 years, 1 peak of living snail density appeared in 2003, and 3 peaks of infected snail density appeared in 1999, 2003-2004 and 2006 in the islets of the Yangtze River. The densities of living snails and infected snails in banks of the Yangtze both appeared 1 peak in 1998. CONCLUSIONS: The distribution of snails in the Yangtze River valley is related to nature, society and financial circumstances, and it is hard to completely perform the snail control in a short-term. Therefore, at the same time of strengthening snail control, we should also strengthen infectious source control.


Subject(s)
Disease Reservoirs/parasitology , Pest Control/trends , Rivers/parasitology , Schistosomiasis/prevention & control , Snails/growth & development , Animals , China , Environment , Humans , Schistosoma/isolation & purification , Schistosoma/physiology , Schistosomiasis/parasitology , Seasons , Snails/parasitology
14.
Nanoscale Res Lett ; 6(1): 173, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21711691

ABSTRACT

The optical properties of multiple dielectric-core-gold-shell nanocylinder pairs are investigated by two-dimensional finite difference time domain method. The core-shell cylinders are assumed to be of the same dimension and composition. For normal incidence, the diffraction spectra of multiple cylinder pairs contain the lightning-rod plasmon mode, and the electric field intensity is concentrated in the gap between the nanocylinder pairs in the infrared region. The resonance wavelength and local field enhancement of this plasmon mode can be tuned by varying the pair-distance between the pairs, the gap-distance between the pairs, and the optical constants of the dielectric-core and the surrounding medium. The results show that the multiple core-shell nanocylinder pair contains the plasmon mode same as that of the solid metallic cylinder pairs at the long wavelength part of the spectrum. The large electric field intensity in the infrared region at long wavelength makes multiple core-shell cylinders as ideal candidates for surface-enhanced spectroscopes.

SELECTION OF CITATIONS
SEARCH DETAIL
...