Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Cancer ; 18(1): 12, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29298665

ABSTRACT

BACKGROUND: Currently, some studies have demonstrated that miR-34a could serve as a suppressor of several cancers including hepatocellular carcinoma (HCC). Previously, we discovered that miR-34a was downregulated in HCC and involved in the tumorigenesis and progression of HCC; however, the mechanism remains unclear. The purpose of this study was to estimate the expression of miR-34a in HCC by applying the microarray profiles and analyzing the predicted targets of miR-34a and their related biological pathways of HCC. METHODS: Gene expression omnibus (GEO) datasets were conducted to identify the difference of miR-34a expression between HCC and corresponding normal tissues and to explore its relationship with HCC clinicopathologic features. The natural language processing (NLP), gene ontology (GO), pathway and network analyses were performed to analyze the genes associated with the carcinogenesis and progression of HCC and the targets of miR-34a predicted in silico. In addition, the integrative analysis was performed to explore the targets of miR-34a which were also relevant to HCC. RESULTS: The analysis of GEO datasets demonstrated that miR-34a was downregulated in HCC tissues, and no heterogeneity was observed (Std. Mean Difference(SMD) = 0.63, 95% confidence intervals(95%CI):[0.38, 0.88], P < 0.00001; Pheterogeneity = 0.08 I2 = 41%). However, no association was found between the expression value of miR-34a and any clinicopathologic characteristics. In the NLP analysis of HCC, we obtained 25 significant HCC-associated signaling pathways. Besides, we explored 1000 miR-34a-related genes and 5 significant signaling pathways in which CCND1 and Bcl-2 served as necessary hub genes. In the integrative analysis, we found 61 hub genes and 5 significant pathways, including cell cycle, cytokine-cytokine receptor interaction, notching pathway, p53 pathway and focal adhesion, which proposed the relevant functions of miR-34a in HCC. CONCLUSION: Our results may lead researchers to understand the molecular mechanism of miR-34a in the diagnosis, prognosis and therapy of HCC. Therefore, the interaction between miR-34a and its targets may promise better prediction and treatment for HCC. And the experiments in vivo and vitro will be conducted by our group to identify the specific mechanism of miR-34a in the progress and deterioration of HCC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs/genetics , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Prognosis , Signal Transduction
3.
Anticancer Drugs ; 28(4): 427-435, 2017 04.
Article in English | MEDLINE | ID: mdl-28085697

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, with a dismal 5-year survival rate less than 15%. The present study aimed to investigate whether AKT inhibition and glucose deprivation could synergistically kill HCC cells and the molecular mechanisms involved. HCC cells were starved in glucose deprivation, and then the resultant cell death was determined by flow cytometry and mitochondrial oxygen consumption rates using a Seahorse XF-24 Extracellular Flux Analyzer. Glucose deprivation reduced mitochondrial oxygen consumption rates for ATP production, enhanced mitochondrial proton leaks, reduced Mcl-1 expression, and subsequently caused significant cell death in the sensitive HepG2 and HCC-M cells. In the resistant Hep3B and Huh7 cells that survived, glucose starvation induced time-dependent AKT activation. However, blockage of AKT activation using chemical inhibitors (ZSTK474 and LY290042) or specific AKT1-targeting siRNAs could not markedly sensitize glucose deprivation-induced cell death. In contrast, AKT inhibitors or AKT1-targeting siRNAs significantly protected the sensitive HepG2 cells from glucose deprivation-induced cell death. More importantly, AKT inhibition mechanically suppressed mTOR activity and induced the prosurvival autophagy pathway in the sensitive HCC cells. Taken together, these data demonstrated that AKT activity was not essential for HCC cell survival during glucose deprivation. The reduction of mTOR activity and induction of the autophagy pathway may hinder the potential application of AKT inhibitors in the cancer therapy of solid tumors such as HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Glucose/deficiency , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Autophagy/physiology , Carcinoma, Hepatocellular/enzymology , Cell Line, Tumor , Cell Survival/physiology , Chromones/pharmacology , Enzyme Activation , Hep G2 Cells , Humans , Liver Neoplasms/enzymology , Mitochondria, Liver , Morpholines/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Oxygen Consumption , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
4.
Cancer Cell Int ; 16: 76, 2016.
Article in English | MEDLINE | ID: mdl-27708550

ABSTRACT

OBJECTIVE: To explore the relationship between tumor necrosis factor receptor-associated factor 6 (TRAF6) and the clinicopathological features in HCC as well as its biological function. METHODS: Totally, 412 liver tissues were collected, including 171 hepatocellular carcinoma (HCC) and their corresponding non-tumor tissues, 37 cirrhosis and 33 normal liver tissues. The expression of TRAF6 was assessed by immunohistochemistry. Then, analysis of the correlations between TRAF6 expression and clinicopathological parameters in HCC was conducted. Furtherer, in vitro experiments on HepG2 and Hep3B cells were performed to validate the biological function of TRAF6 on HCC cells. TRAF6 siRNA was transfected into HepG2 and Hep3B cell lines and TRAF6 expression was evaluated with RT-qPCR and western blot. The assays of cell viability, proliferation, apoptosis and caspase-3/7 activity were carried out to investigate the effects of TRAF6 on HCC cells with RNA interference. Cell viability was assessed with Cell Titer-Blue kit. Cell proliferation was tested with MTS kit. Cell apoptosis was checked through morphologic detection with fluorescence microscope, as well as caspase-3/7 activity was measured with fluorogenic substrate detection. RESULTS: The positive expression rate of TRAF6 protein was 49.7 % in HCC, significantly higher than that of normal liver (12.1 %), cirrhosis (21.6 %) and adjacent non-cancerous tissues (36.3 %, all P < 0.05). Upregulated TRAF6 was detected in groups with metastasis (Z = -2.058, P = 0.04) and with low micro-vessel density (MVD) expression (Z = -2.813, P = 0.005). Spearman correlation analysis further showed that the expression of TRAF6 was positively correlated with distant metastasis (r = 0.158, P = 0.039) and negatively associated with MVD (r = -0.249, P = 0.004). Besides, knock-down of TRAF6 mRNA in HCC cell lines HepG2 and Hep3B both resulted in cell viability and proliferation inhibition, also cell apoptosis induction and caspase-3/7 activity activation. CONCLUSIONS: TRAF6 may contribute to metastasis and deterioration of the HCC via influencing cell growth and apoptosis. Thus, TRAF6 might become a predictive and therapeutic biomarker for HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...