Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 471: 134347, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677115

ABSTRACT

Microplastics (MPs) are among the most widespread anthropogenic pollutants of natural environments, while limited research has focused on the fate of MPs in soils along the Plateau rivers. In this study, we investigated MPs in soils along the source areas of the Yangtze River on the Qinghai-Tibet Plateau. The results showed mean MP abundance values of (89.4 ± 51.0) and (64.4 ± 24.5) items/kg of dry soils around the tributary and mainstream areas, respectively. Film, transparent colors, and polyethylene were common shape, color, and compositions, respectively. The correlation analysis and PCA revealed that MP abundance was related to soil heavy metals (Cr and Ni) and nutrients (TOC and TP) (p < 0.05). Structural equation modeling also revealed that population density was the dominant driving factor contributing to MPs, with a total effect coefficient of 0.45. In addition, the conditional fragmentation model further distinguished the differences in MP sources from upstream to downstream along the Jinsha River. The significant sources of MPs in the bare land and grasslands from the upper reaches of the Jinsha River included traffic, tourism, and atmospheric transport. In contrast, MP transport during farming activities mainly contributed to MPs in the agricultural soil in the lower reaches.

2.
Chemosphere ; 332: 138824, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37164196

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants (POPs) that pose significant environmental and human health risks. The presence of PFAS in landfill leachate is becoming an increasingly concerning issue. This article presents a comprehensive review of current knowledge and research gaps in monitoring and removing PFAS from landfill leachate. The focus is on evaluating the effectiveness and sustainability of existing removal technologies, and identifying areas where further research is needed. To achieve this goal, the paper examines the existing technologies for monitoring and treating PFAS in landfill leachate. The review emphasizes the importance of sample preparation techniques and quality assurance/quality control measures in ensuring accurate and reliable results. Then, this paper reviewed the existing technologies for removal and remediation of PFAS in landfill leachates, such as adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands. Additionally, the paper summarizes the factors that exhibit the performance of various treatment technologies: reaction time, experimental conditions, and removal rates. Furthermore, the paper evaluates the potential application of different remediation technologies (i.e., adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands, etc.) in treating landfill leachate containing PFAS and its precursors, such as fluorotelomeres like FTOH and FTSs. The review highlights the importance of considering economic, technical, and environmental factors when selecting control measures. Overall, this article aims to provide guidance for promoting environmental protection and sustainable development in the context of PFAS contamination in landfill leachate.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Waste Disposal Facilities , Fluorocarbons/analysis , Biodegradation, Environmental , Quality Control
3.
Chemosphere ; 287(Pt 1): 132124, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34523449

ABSTRACT

An energy information flow-based ecological risk assessment framework (EIF-ERA) is developed for identifying ecological risk transmission rules among communities (i.e., vegetation E1, herbivorous animals E2, soil microorganisms E3, and carnivorous animals E4) within the heavy metals contaminated soil system. This framework is integrated with numerous techniques of carcinogenic risk evaluation, ecological risk assessment (ERA), and Monte Carlo simulation. Stepwise quadratic response surface analysis (SQRSA) is employed for reflecting the relation between contaminants' concentration and comprehensive risk. Two scenarios with respect to the environmental quality standards (scenarios 1) and carcinogenic risk reversion (scenarios 2) are merged into the EIF-ERA. A real-world mining area in Xinglong County in Chengde is selected to verify the developed framework's effectiveness. Results reveal that E3 is considered as the most sensitive community when contaminant interference occurs, and its 62.3% and 37.7% of comprehensive risk are contributed by initial and direct risks, respectively. Other communities can receive direct risk through control allocation (CA). Monte Carlo anlysis shows that there are 7.68% and 20.25% increase in the initial risk of Cd and Pb when their quantile statistics increase from 70% to 90%. Determination of an appropriate screening value is vital for contaminated mining soil remediation due to its inefficiency of remediation funds, especially when considering the trict standards of contaminants' concentration within scenarios 1. The surrogates obtained from the SQRSA display the relation of contaminant concentration and comprehensive risks with the adjusted R2 greater than 0.77. These findings can be in support of system design, risk assessment, and site remediation.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Environmental Monitoring , Metals, Heavy/analysis , Mining , Risk Assessment , Soil , Soil Pollutants/analysis
4.
Chemosphere ; 275: 130099, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33667772

ABSTRACT

Potentially toxic elements (PTEs) generated from mining activities have affected ecological diversity and ecosystem functions around the world. Accurately assessing the long-term effects of PTEs is critical to classifying recoverable areas and proposing management strategies. Mining activities that shape geographical patterns of biodiversity in individual regions are increasingly understood, but the complex interactions on broad scales and in changing environments are still unclear. In this study, we developed a series of empirical models that simulate the changes in biodiversity and ecosystem functions in mine-affected regions along elevation gradients (1500-3600 m a.s.l) in the metal-rich Qilian Mountains (∼800 km) on the northeastern Tibetan Plateau (China). Our results confirmed the crucial role of PTEs dispersal, topography, and climatic heterogeneity in the diversification of plant community composition. On average, 54% of the changes in ecosystem functions were explained by the interactions among topography, climate, and PTEs. However, merely 30% of the changes were correlated with a single driver. The changes in species composition (explained variables = 94.8%) in the PTE-polluted habitats located in the warm and humid low-elevation deserts and grasslands were greater than those occurring in the dry alpine deserts and grasslands. The ecosystem functions (soil characteristics, nutrient migration, and plant biomass) experienced greater changes in the humid low-elevation grasslands and alpine deserts. Our results suggest that the processes driven by climate or other factors can result in high-altitude PTE-affected habitat facing greater threats.


Subject(s)
Climate Change , Ecosystem , Altitude , Biodiversity , China , Tibet
5.
J Hazard Mater ; 407: 124776, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33388722

ABSTRACT

Microplastics (MPs) are pervasive in the environment and have posed growing threat to ecosystems and human health. This study investigated MP abundances in surface water (fresh and salt lakes, urban and rural rivers, etc.) from 28 stations in the Qinghai-Tibet Plateau. MPs were detected in 25 out of 28 water samples with relatively low abundance (average 584.82 particles m-3). Fibers were the most frequently observed shape, particle sizes mostly ranged from 100 to 500 µm, and the greatest number of MPs was polypropylene. Source analysis identified the major sources of domestic wastewater and tourism in some areas. The concentration and proportion of small MPs (20-100 µm) in salty water were apparently greater than that in fresh water, indicating Salt intrusion accelerated MPs fragmentation. As the study area is the origin of the Yangtze River, we further compared the MP distribution throughout the watershed. Nearly two orders of magnitude in MP concentrations were increased associated with urban agglomeration in the middle and downstream areas, but the highest level was marked around the Yichang City (location of the Three Gorges Reservoir) due to interception associated with sedimentation and precipitation. This study provides data and theoretical bases for analyzing MPs migration and degradation processes in high altitudes.

6.
Sci Total Environ ; 739: 140087, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32758955

ABSTRACT

Microplastics are one of the most valuable indicators reflecting the effects of human activities on natural environment. This study was conducted in a representative remote region of Tibetan Plateau in China, simultaneously analyzing the abundance, compositions and fate of MPs both in water and soil media. MPs were detected in surface water, sediment and soil with abundances ranging from 66.6 to 733.3 number/m3, 20 to 160 items/kg, and 20 to 110 items/kg, respectively. Fibers were the most frequently observed shape in the surface water and sediment, while the dominant shape in the soil was film. The major polymers of MPs in water and soil samples were polypropylene (PP) and polyethylene (PE). Small MPs were the main components with the <500µm fraction accounting for 94.74%, 88.37% and 88.34% of total MP particles in surface water, sediment and soil, respectively. Correlation analysis was further conducted to identify the sources of MPs from different human activities. The night light index was innovatively used to represent population rather than local residents, considering the large number of tourists in this region. It was found that tourism was the main source of MPs in water bodies, while facility agriculture and previous secondary industry are major contributors to soil MPs. A simplified equation set for MP abundance prediction was also formulated related to different industrial features. This study provides an evidence of noticeable MPs associated with human activities even at remote regions, and advances a feasible tool for MPs prediction according to local economic development. CAPSULE: The effect of human activities on natural environment in a remote region was illustrated by evaluating the abundance, compositions and fate of MPs across freshwater and terrestrial environment.

7.
Environ Pollut ; 255(Pt 2): 113255, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563784

ABSTRACT

As one of the most cost-effective and sustainable methods for contaminants' removal, sequestration and/or detoxification, phytoremediation has already captured comprehensive attention worldwide. Nevertheless, the accurate effects of various spatial pattern in enhancing phytoremediation efficiency is not yet clear, especially for the polluted mining areas. This study designed nine planting patterns (monocropping, double intercropping and triple intercropping) of three indigenous plant species (Setaria viridis (L.), Echinochloa crus-galli (L.) and Phragmites australis (Cav.) Trin. ex Steud.) to further explore the effects of plants spatial pattern on phytoremediation efficiency. Considering the uncertainties of the residual contaminants' concentration (RCC) caused by soil anisotropy, permeability and land types, the interval transformation was introduced into the plant uptake model to simulate the remediation efficiency. Then multi-criteria decision analysis (MCDA) were applied to optimal the planting patterns, with the help of criteria of (a) the amount of heavy metal absorption; (b) the concentration of residual contaminant in soil; (c) root tolerance of heavy metals; (d) the total investment cost. Results showed that (1) the highest concentrations of Zn, Cd, and Pb of the polluted area were 7320.02, 14.30, 1650.51 mg kg-1 (2) During the 180 days simulation, the highest RMSE of residue trace metals in soil are 3.02(Zn), 2.67(Pb), 2.89(Cd), respectively. (3) The result of IMCDA shows that the planting patterns of Setaria viridis, Echinochloa crus-galli and Phragmites australis in alternative a9 (269 mg kg-1 year-1) had the highest absorption rate of heavy metals compared with a7 (235 mg kg-1 year-1) and a2 (240 mg kg-1 year-1). After 20 years of remediation, the simulated RCC in a9 is far below the national standard, and the root toxicity is 0.12 (EC ≤ EC20). In general, the optimal alternative derived from interval residual contaminant concentration can effectively express the dynamic of contaminant distribution and then can be effectively employed to evaluate the sustainable remediation methods.


Subject(s)
Biodegradation, Environmental , Metals, Heavy/metabolism , Plants/metabolism , Soil Pollutants/metabolism , Decision Support Techniques , Metals, Heavy/analysis , Mining , Plants/drug effects , Poaceae , Soil/chemistry , Soil Pollutants/analysis , Trace Elements/analysis
8.
Environ Sci Pollut Res Int ; 26(24): 24630-24644, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31240649

ABSTRACT

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd > Cu > Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.


Subject(s)
Soil Pollutants/analysis , Sulfides/chemistry , Trace Elements/analysis , Zinc Compounds/chemistry , Zinc/analysis , Adult , Child , China , Ecology , Environmental Pollution/analysis , Humans , Mining , Risk Assessment , Soil , Soil Pollutants/chemistry , Trace Elements/chemistry , Water Resources , Zinc/chemistry
9.
Chemosphere ; 225: 395-405, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30884301

ABSTRACT

The optimal treatment designs of the heavy metal pollution sites and the calculation of the recovery capacity are important in recent studies. In this paper, we aimed to model the accumulation of heavy metals under different artificially Cd added concentrations, and analyzed the various tobacco solute adsorption and fluid flow properties. The finite difference method was used to simulate the heavy metals flux and root absorption in the soil, and the model simulation was compared with the measured values to quantify the uncertainty of the metal transport and modeling parameters. Treatments with different Cd levels were compared, e.g., control tillage (CT), low Cd tillage (LT, 2.0 mg/kg), high Cd tillage (HT, 20.0 mg/kg), ultra-high Cd tillage (UHT, 80.0 mg/kg). The predicted soil water content (SWC) was consistent with observed data. Predicted cumulative root water uptake (mm) ranked as follows: CT (196)>LT (178)>HT (134)>UHT (117). Potential transpiration rates (T r p) under HT and UHT were lower than that of other treatment, because of their lower leaf Area Index (LAI). The predicted root Cd uptake showed a strong correlation within the actual Cd uptake. The predicted root absorption of Cdmax was UHT (180.17)> HT (106.52)> LT (53.20) >CT (0.610). However, deviation of models was added by the Cd effluent trend and the performance of root exudates. This finding would be useful for further investigation into bio-remediation in the agricultural area, not only for Cd ion but for a range of other heavy metal contaminants.


Subject(s)
Biological Transport/physiology , Cadmium/metabolism , Nicotiana/metabolism , Plant Roots/metabolism , Soil Pollutants/analysis , Adsorption/physiology , Agriculture , Atmosphere , Metals, Heavy/analysis , Plant Leaves/chemistry , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...