Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Chem Phys ; 159(11)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37712795

ABSTRACT

Micro-nano symbiotic superamphiphobic surfaces can prevent liquids from adhering to metal surfaces and, as a result, improve their corrosion resistance, self-cleaning performance, pollution resistance, and ice resistance. However, the fabrication of stable and controllable micro-nano symbiotic superamphiphobic structures on metal surfaces commonly used in industry remains a significant challenge. In this study, a laser-electrochemical hybrid subtractive-additive manufacturing method was proposed and developed for preparing copper superamphiphobic surfaces. Both experimental and fluid simulation studies were carried out. Utilizing this novel hybrid method, the controllable preparation of superamphiphobic micro-nano symbiotic structures was realized. The experimental results showed that the prepared surfaces had excellent superamphiphobic properties following subsequent modification with low surface energy substances. The contact angles of water droplets and oil droplets on the surface following electrodeposition treatment reached values of 161 ± 4° and 151 ± 4°, respectively, which showed that the prepared surface possessed perfect superamphiphobicity. Both the fabrication method and the test results provided useful insights for the preparation of stable and controllable superamphiphobic structures on metal surfaces in the future.

2.
Sci Rep ; 13(1): 6643, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095173

ABSTRACT

Hydrogen, oxygen, carbon, and nitrogen isotopes derived from three different strains of silkworms at different life stages involved in silkworm rearing, were measured to understand the fractionation characteristics of stable isotopes at different stages of silkworm development, and to trace the movement of these isotopes from food to larva to excrement and finally to silk. We found that silkworm strain had little effect on δ2H, δ18O and δ13C values. However, a large difference was found in the δ15N levels of newly-hatched silkworms between Jingsong Haoyue and Hua Kang No. 3 orthogonal strains, suggesting that the mating and egg laying differences may result in an inconsistent kinetic nitrogen isotope fractionation. The δ13C values of silkworm pupae and silkworm cocoon also displayed significant differences, suggesting that heavy carbon isotopes are greatly fractionated from the larva to the silk during cocoon formation. Overall, these results may be used to clarify the relationship between isotope fractionation and the ecological process of the Bombyx mori and expand our ability to resolve stable isotope anomalies at a small regional-scale level.


Subject(s)
Bombyx , Animals , Pilot Projects , Silk , Larva , Nitrogen Isotopes
3.
Materials (Basel) ; 13(9)2020 May 04.
Article in English | MEDLINE | ID: mdl-32375341

ABSTRACT

Hot corrosion is one of the crucial failure modes of Ni-based superalloy components operating at high temperatures, which inevitably affects the subsequent mechanical properties of the alloys. In this research, damaged Inconel 718 alloy components with a pre-made trapezoid groove are repaired using laser additive manufacturing technique, and the change mechanisms of the microstructure and tensile properties of the repaired Inconel 718 alloy due to the hot corrosion in the salt mixture of 87.5 wt.% Na2SO4 + 5 wt.% NaCl + 7.5 wt.% NaNO3 at 650 °C for different durations are investigated. The results show that oxidation and Cr-depletion occur on the repaired components due to the hot corrosion, and the corrosion products are mainly composed of Cr2O3, Fe3O4, and Ni3S2. The tensile strength and elongation of the as-repaired specimens are 736.6 MPa and 12.5%, respectively. After being hot corroded for 50 h, the tensile strength increases to 1022.9 MPa and elongation decreases to 1.7%. However, after being hot corroded for 150 h, both tensile strength and elongation of the repaired specimens drop to 955.8 MPa and 1.2%, respectively. The mechanical performance alteration is highly related to thermal effects instead of the molten salt attack.

4.
Materials (Basel) ; 10(3)2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28772652

ABSTRACT

Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties.

5.
ACS Appl Mater Interfaces ; 8(47): 32541-32556, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27933854

ABSTRACT

Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al2O3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...