Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 597: 171-181, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33866209

ABSTRACT

HYPOTHESIS: Hydrogel-based sensors have attracted considerable attention due to potential opportunities in human health monitoring when both mechanical flexibility and sensing ability are required. Therefore, the integration of excellent mechanical properties, electrical conductivity and self-healing properties into hydrogels may improve the application range and durability of hydrogel-based sensors. EXPERIMENTS: A novel composite hydrogel composed of polyaniline (PANI), polyacrylic acid (PAA) and 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNFs) was designed. The viscoelastic, mechanical, conductive, self-healing and sensing properties of hydrogels were studied. FINDINGS: The TOCNF/PANI/PAA hydrogel exhibits a fracture strain of 982%, tensile strength of 74.98 kPa and electrical conductivity of 3.95 S m-1, as well as good mechanical and electrical self-healing properties within 6 h at ambient temperature without applying any stimuli. Furthermore, owing to the high sensitivity of the TOCNF/PANI/PAA-0.6 hydrogel-based strain sensor (gauge factor, GF = 8.0), the sensor can accurately and rapidly detect large-scale motion and subtle localized activity. The proposed composite hydrogel is as a promising material for use as soft wearable sensors for health monitoring and smart robotics applications.

2.
Carbohydr Polym ; 250: 116905, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33049881

ABSTRACT

Stretchable, self-healing and conductive hydrogels have attracted much attention for wearable strain sensors, which are highly required in health monitoring, human-machine interaction and robotics. However, the integration of high stretchability, self-healing capacity and enhanced mechanical performance into one single conductive hydrogel is still challenging. In this work, a type of stretchable, self-healing and conductive composite hydrogels are fabricated by uniformly dispersing TEMPO-oxidized cellulose nanofibers (TOCNFs)-graphene (GN) nanocomposites into polyacrylic acid (PAA) hydrogel through an in-situ free radical polymerization. The resulting hydrogels demonstrate a stretchability (∼850 %), viscoelasticity (storage modulus of 32 kPa), mechanical strength (compression strength of 2.54 MPa, tensile strength of 0.32 MPa), electrical conductivity (∼ 2.5 S m-1) and healing efficiency of 96.7 % within 12 h. The hydrogel-based strain sensor shows a high sensitivity with a gauge factor of 5.8, showing great potential in the field of self-healing wearable electronics.


Subject(s)
Electric Conductivity , Graphite/chemistry , Hydrogels/chemistry , Monitoring, Physiologic/instrumentation , Movement , Nanocomposites/chemistry , Wearable Electronic Devices , Biocompatible Materials/chemistry , Humans , Monitoring, Physiologic/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...