Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Reprod Domest Anim ; 59(1): e14522, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38268206

ABSTRACT

This study examined the impact of cyclicity (with or without cycle corpus luteum; CL) on oocyte quality and embryonic development in buffaloes. We collected oocytes from the ovaries of slaughtered buffaloes (N = 158 cyclic; n = 316 ovaries and N = 177 acyclic; n = 353 ovaries). Blood progesterone concentration and number of oocytes per ovary were higher in cyclic buffaloes. Cyclic buffalo ovaries produce higher oocytes with I + II and fewer III + IV grades. Oocytes from cyclic buffaloes had a higher maturation rate based on cumulus expansion, cleavage rate and embryo development to the 8-cell, morula and blastocyst stages than acyclic buffaloes. In conclusion, oocytes recovered from the ovaries of the cyclic buffaloes showed improved oocyte competence and subsequent in vitro blastocyst development.


Subject(s)
Bison , Buffaloes , Animals , Female , Pregnancy , Oocytes , Blastocyst , Embryonic Development
2.
Anim Sci J ; 93(1): e13767, 2022.
Article in English | MEDLINE | ID: mdl-36123790

ABSTRACT

Buffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries. Reproduction of buffaloes, however, is confronted with huge challenge and concern as being generally less efficient to reproduce compared with cattle due to both intrinsic and extrinsic factors such as poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anestrus, long calving interval, delayed puberty, inherently low number of primordial follicles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive technologies (ARTs) are major interventions for the efficient utilization of follicle reserve in buffaloes. The present review focuses on estrus and ovulation synchronization for fixed time artificial insemination, in vitro embryo production, intracytoplasmic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear transfer, the factors affecting utilization in various ARTs, and future perspectives in buffaloes.


Subject(s)
Buffaloes , Semen , Anestrus , Animals , Cattle , Female , Insemination, Artificial/veterinary , Male , Reproductive Techniques, Assisted/veterinary
3.
Biotech Histochem ; 97(3): 159-167, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34024235

ABSTRACT

Although inducible pluripotent stem cells (iPSC) have been identified in poultry, the induction efficiency is low, because different culture media, feeder cells and feeder layer treatments affect the efficiency of somatic cell reprogramming. We investigated improvement of the feeder culture system for induction of chicken iPSC by comparing the effects of different types and treatments of feeder cells on the growth and proliferation of chicken iPSC. Mouse embryo fibroblasts (MEF), but not Sandoz inbred mouse-derived thioguanine-resistant and ouabain-buffalo rat cells, were suitable feeder cells that supported proliferation of chicken iPSC. Institute of Cancer Research (ICR) mice, but not Kunming mice, were suitable for preparing MEF that support cell proliferation. Also, MEF feeder cells that had been inactivated by mitomycin C were effective. Leukemia inhibitory factor was not required for chicken iPSC culture when MEF feeder cells were used. The optimal feeder culture system for growth and proliferation of chicken iPSC consisted of MEF feeder cells derived from ICR mice that were inactivated by mitomycin C combined with embryonic germ cell culture medium.


Subject(s)
Chickens , Pluripotent Stem Cells , Animals , Cell Differentiation , Cell Proliferation , Feeder Cells , Fibroblasts , Mice
4.
Reprod Domest Anim ; 56(4): 629-641, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33492695

ABSTRACT

The microenvironment in the seminiferous tubules of buffalo changes with age, which affects the self-renewal and growth of spermatogonial stem cells (SSCs) and the process of spermatogenesis, but the mechanism remains to be elucidated. RNA-seq was performed to compare the transcript profiles of pre-pubertal buffalo (PUB) and adult buffalo (ADU) seminiferous tubules. In total, 17,299 genes from PUB and ADU seminiferous tubules identified through RNA-seq, among which 12,271 were expressed in PUB and ADU seminiferous tubules, 4,027 were expressed in only ADU seminiferous tubules, and 956 were expressed in only PUB seminiferous tubules. Of the 17,299 genes, we identified 13,714 genes that had significant differences in expression levels between PUB and ADU through GO enrichment analysis. Among these genes, 5,342 were significantly upregulated and possibly related to the formation or identity of the surface antigen on SSCs during self-renewal; 7,832 genes were significantly downregulated, indicating that genes in PUB seminiferous tubules do not participate in the biological processes of sperm differentiation or formation in this phase compared with those in ADU seminiferous tubules. Subsequently, through the combination with KEGG analysis, we detected enrichment in a number of genes related to the development of spermatogonial stem cells, providing a reference for study of the development mechanism of buffalo spermatogonial stem cells in the future. In conclusion, our data provide detailed information on the mRNA transcriptomes in PUB and ADU seminiferous tubules, revealing the crucial factors involved in maintaining the microenvironment and providing a reference for further in vitro cultivation of SSCs.


Subject(s)
Adult Germline Stem Cells/physiology , Buffaloes/physiology , Gene Expression Profiling/veterinary , Sexual Maturation/physiology , Animals , Gene Expression Regulation, Developmental , Male , RNA, Messenger , Seminiferous Tubules/cytology , Seminiferous Tubules/physiology
5.
Environ Pollut ; 267: 115467, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32882463

ABSTRACT

Artificial light at night (ALAN) exposes us to prolonged illumination, that adversely affects female reproduction. However, it remains to be clarified how prolonged light exposure affects oocyte meiotic maturation and quality. To this end, we exposed female mice to a constant light (CL) of 250 lux for different durations. Our findings showed that CL exposure for 7 weeks reduced the oocyte maturation rate. Meanwhile, CL exposure caused greater abnormalities in spindle assembly and chromosome alignment and a higher rate of oocyte aneuploidy than the regular light dark cycle. CL exposure also induced oxidative stress and caused mitochondrial dysfunction, which resulted in oocyte apoptosis and autophagy. Notably, our results showed that CL exposure reduced the levels of α-tubulin acetylation, DNA methylation at 5 mC, RNA methylation at m6A and histone methylation at H3K4me2 but increased the levels of histone methylation at H3K27me2 in oocytes. In summary, our findings demonstrate that constant bright light exposure causes oocyte meiotic defects and reduces cytoplasmic quality. These results extend the current understanding of ALAN-mediated defects in female reproduction.


Subject(s)
Apoptosis , Oocytes , Animals , Autophagy , Cell Cycle , Female , Mice , Oxidative Stress
6.
Reprod Domest Anim ; 55(9): 1115-1123, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32564396

ABSTRACT

Buffalo is considered short-day breeder in tropical and subtropical part of the world and seasonality and photoperiodism impart major influence on its fertility. However, its impact on in vitro embryo production (IVEP) remains elusive. Therefore, this study investigated the effect of seasonal variations and photoperiodism on morphological and molecular parameters of IVEP in buffalo. For this purpose, we conducted two different experiments on the oocytes obtained by aspirating follicles from abattoir derived ovaries. In Exp. I, retrospective analysis was performed for oocyte recovery, blastocyst and hatching rate, during four consecutive seasonal periods (i.e. January-March, April-June, July-September and October-December). In Exp. II, oocytes from peak breeding and non-breeding seasons were subjected to 24 hr in vitro maturation and evaluated for polar body extrusion to assess maturation rate. Results showed that embryo development was markedly low during second quarter (April-June) and maximum during fourth quarter (October-December) of the year; referred as non-breeding and breeding seasons, respectively. Comparative data analysis demonstrated that poor oocyte quality is major reason for lesser efficiency of embryo production during non-breeding season than peak breeding season as suggested by poor oocyte recovery (2.31 ± 0.10 vs. 3.65 ± 0.27) and maturation rate (33.32 ± 2.1 vs. 63.15 ± 7.31). Subsequently, comparative gene expression analysis of blastocysts during peak breeding season significantly upregulated pluripotency gene (OCT-4) and downregulated heat shock protein 90, as compared to non-breeding season. Therefore, it could be divulged from the present study that seasonal variations and photoperiodism have profound effect on oocyte quality and subsequent embryo development. It is recommended to find suitable additives for in vitro maturation that could mitigate seasonal effects.


Subject(s)
Buffaloes/physiology , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/growth & development , Photoperiod , Seasons , Animals , Embryonic Development , Female , Fertilization in Vitro/veterinary , Gene Expression Regulation , HSP90 Heat-Shock Proteins/genetics , Male , Octamer Transcription Factor-3/genetics , Oocytes/physiology
8.
Theriogenology ; 149: 38-45, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32234649

ABSTRACT

The presence of serum in embryo culture medium has been implicated for increased embryo's sensitivity to cryopreservation, compromised viability, abnormal embryo and fetal development. Hence, designing a serum free culture system is indispensable. The present study aims to compare the efficiency of the serum and granulosa cells monolayer free commercial culture system (SFCS) with the conventional serum supplemented co-culture system (SSCS) and optimized culture system (OCS). Generally, SFCS is designed explicitly for bovine oocyte maturation and embryo culture (SF-IVM and SF-IVC), and SSCS (based on M199, SS-IVM, and SS-IVC) is utilized for buffalo in vitro embryo production. However, OCS is a newly designed culture system in which oocyte maturation is performed in serum supplemented maturation medium, and the subsequent embryos are co-cultured with granulosa cells in serum free culture medium. To evaluate the effect of serum on buffalo embryo production, buffalo oocytes, and their subsequent embryos were cultured in SSCS, SFCS, and OCS, simultaneously. The percentage of cleaved embryos cultured in SSCS and OCS was approximately 4% higher as compared to SFCS. However, OCS significantly showed the maximum proportion of embryos that developed to the blastocyst stage (7d) and hatched (6d) as compared to the SFCS and SSCS. Additionally, OCS promoted the expression of developmentally important genes (BCL2-L1 and VEGF-A), cell number, and cryo-survival ability of blastocysts in comparison with SSCS. Taken together, OCS is more suitable for the oocyte maturation and culture of buffalo embryos. However, to design the serum free culture system, it is recommended to find suitable serum alternatives for in vitro oocyte maturation.


Subject(s)
Buffaloes/embryology , Embryo Culture Techniques/veterinary , Animals , Blastocyst/physiology , Coculture Techniques/veterinary , Cryopreservation/veterinary , Culture Media , Culture Media, Serum-Free , Embryo Culture Techniques/methods , Embryo, Mammalian/physiology , Female , Gene Expression Regulation, Developmental , Granulosa Cells/physiology , In Vitro Oocyte Maturation Techniques/methods , In Vitro Oocyte Maturation Techniques/veterinary
9.
Theriogenology ; 141: 35-40, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31518726

ABSTRACT

Oocyte in vitro maturation (IVM) plays a pivotal role in in vitro embryo production. However, the efficiency of IVM is still low and needs to be further improved. In the present study, we evaluated the beneficial effects of mogroside V, an extract derived from Siraitia grosvenorii, on oocyte IVM. Porcine cumulus-oocyte complexes were cultured in IVM medium supplemented or not supplemented with mogroside V for 40 h. We found that mogroside V supplementation increased the percentage of oocyte first polar body extrusion and improved subsequent blastocyst formation after parthenogenetic activation. Furthermore, mogroside V reduced the levels of reactive oxygen species (ROS) and increased the mRNA expression of oxidative stress-related genes (SOD, CAT and SIRT1). Moreover, mogroside V supplementation enhanced the mitochondrial content, mtDNA copy number, mitochondrial membrane potential (ΔΨm), ATP generation, and the relative mRNA expression of mitochondria-related genes (PGC-1α and TFAM). In summary, our findings demonstrate that mogroside V supplementation reduces intracellular ROS levels and enhances mitochondrial function to promote porcine oocyte IVM.


Subject(s)
Embryo Culture Techniques/veterinary , Embryonic Development/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/drug effects , Swine/physiology , Triterpenes/pharmacology , Animals , DNA, Mitochondrial , Fertilization in Vitro/veterinary , Mitochondria/physiology , Oocytes/metabolism , Reactive Oxygen Species/metabolism
10.
Theriogenology ; 141: 62-67, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31518730

ABSTRACT

Primordial germ cells (PGCs) are precursors of sperms and oocytes and responsible for passing the genetic information from one generation to the next. Chicken PGCs segregate from somatic cells in early embryo and could be isolated and cultured in vitro, making it a useful tool to produce genetically modified animals. However, the number of PGCs isolated from embryo is limited and these cells are not efficient to proliferation in vitro. GSK-3 plays an important role in multiple intracellular signaling pathways and inhibition of GSK-3-mediated ß-catenin phosphorylation is known to reduce apoptosis and promote proliferation in T cells and embryo stem cells (ESC). In this study, we investigate the effect of GSK-3 inhibitor on the proliferation of PGCs in vitro and found significant increases of cell proliferation in the culture supplemented with CHIR. We further found that CHIR regulates PGC cell cycle by activating Wnt signaling and antagonizing the apoptosis of PGCs by inhibition of the expression of caspase-3 and Beclin-1. PGCs treated with CHIR expressed the germ cell-related markers and retain the capability to colonize the embryonic gonad after re-introduction to vasculature of HH stage-15 embryos. These results suggest that GSK-3 is involved in cell renewal and apoptosis in chicken PGCs.


Subject(s)
Chick Embryo/metabolism , Gene Expression Regulation, Developmental/drug effects , Germ Cells/metabolism , Glycogen Synthase Kinase 3/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Cells, Cultured , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Wnt Signaling Pathway/drug effects
11.
Reprod Toxicol ; 93: 10-18, 2020 04.
Article in English | MEDLINE | ID: mdl-31874190

ABSTRACT

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) in particulate matter that has a diameter of ≤2.5 µm (PM2.5). Studies have demonstrated that BaP exposure causes oocyte meiotic arrest in mice. However, whether BaP exposure also affects oocyte maturation in offspring remains unclear. To test this, female mice were administered BaP before pregnancy to generate BaP-exposed offspring. Our findings showed that BaP exposure reduced the in vitro maturation and increased the abnormalities of meiotic apparatus in offspring oocytes. In addition, BaP exposure reduced the mitochondrial content and intracellular ATP generation, induced early apoptosis, increased reactive oxidative species accumulation and the genomic DNA 5-methylcytosine (5mc) level in offspring oocytes. Along with the abovementioned defective parameters, maternal BaP exposure further compromised the embryo developmental competence of offspring oocytes. In summary, our study demonstrated that maternal BaP exposure compromised offspring oocyte maturation and quality.


Subject(s)
Benzo(a)pyrene/toxicity , Carcinogens/toxicity , Mutagens/toxicity , Oocytes/drug effects , Prenatal Exposure Delayed Effects , Animals , DNA Methylation/drug effects , Female , Maternal-Fetal Exchange , Meiosis/drug effects , Mice, Inbred ICR , Mitochondria/drug effects , Oocytes/metabolism , Pregnancy , Reactive Oxygen Species/metabolism
12.
Aging (Albany NY) ; 11(19): 8362-8373, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31586990

ABSTRACT

Postovulatory ageing compromises oocyte quality and subsequent development in various manners. We aimed to assay the protective effects of mogroside V on porcine oocyte quality during in vitro ageing and explore the related causes. We observed that mogroside V can effectively maintain normal oocyte morphology and early embryo development competence after prolonged culture for 24 h. Moreover, mogroside V can markedly reduce reactive oxygen species (ROS) levels, alleviate spindle formation and chromosome alignment abnormalities, improve mitochondrial contents, adenosine triphosphate (ATP) levels and the membrane potential (ΔΨm), and reduce early apoptosis in aged oocytes. We examined the molecular changes and found that SIRT1 expression was decreased in in vitro aged oocytes but was maintained by exposure to mogroside V. However, when SIRT1 was successfully inhibited by the specific inhibitor EX-527, mogroside V could not reduce ROS levels or alleviate abnormal spindle organization and chromosome misalignment. In summary, our results demonstrated that mogroside V can alleviate the deterioration of oocyte quality during in vitro ageing, possibly by reducing oxidative stress through SIRT1 upregulation.


Subject(s)
Cellular Senescence , Oxidative Stress/drug effects , Sirtuin 1 , Triterpenes/pharmacology , Animals , Carbazoles/pharmacology , Cellular Senescence/drug effects , Cellular Senescence/physiology , Female , Oocytes/drug effects , Oocytes/physiology , Reactive Oxygen Species/analysis , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/metabolism , Swine , Up-Regulation
13.
Reprod Domest Anim ; 54(12): 1574-1582, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31544277

ABSTRACT

The objective of this study was to investigate the effects of different growth factors on the proliferation of Bama mini-pig spermatogonial stem cells (SSCs) in vitro. The growth factors glial cell line-derived neurotrophic factor (GDNF), leukaemia inhibitory factor (LIF), GDNF family receptor alpha-1 (GFRα1) and basic fibroblast growth factor (bFGF) were investigated. The SSCs were seeded on SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) feeder layers. Cultivation of the cells were subjected to a factorial design of the growth factors GDNF + bFGF, GDNF + bFGF + GFRα1, LIF + bFGF and LIF + bFGF + GFRα1. The SSCs could propagate for 25 passages in the medium adding GDNF + bFGF + GFRα1, 22 passages in the medium adding GDNF + bFGF, 6 passages in the medium adding LIF + bFGF, or LIF + bFGF + GFRα1. qRT-PCR analysis showed that the highest mRNA expression levels of NANOG, POU5F, DDX4, GFRα1 and UCHL1 were detected in the group adding GDNF + bFGF + GFRα1. The SSCs from the group adding GDNF + bFGF + GFRα1 also showed UCHL1-, DBA- and CDH1-positive staining. Moreover, Stra8 and Scp3 expression, and haploid peak were detected after induction of the SSCs from the group adding GDNF + bFGF + GFRα1. In conclusion, pig SSCs could be maintained for long term in the presence of GDNF, bFGF, and GFRα1.


Subject(s)
Adult Germline Stem Cells/drug effects , Cell Proliferation/drug effects , Fibroblast Growth Factor 2/pharmacology , Glial Cell Line-Derived Neurotrophic Factor Receptors/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Adult Germline Stem Cells/cytology , Animals , Cell Line , China , Coculture Techniques , Male , Mice , Spermatogenesis , Swine , Swine, Miniature , Testis/cytology , Transcription Factors/metabolism
14.
In Vitro Cell Dev Biol Anim ; 55(10): 784-792, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31456163

ABSTRACT

Dwarfism, also known as growth hormone deficiency (GHD), is a disease caused by genetic mutations that result in either a lack of growth hormone or insufficient secretion of growth hormone, resulting in a person's inability to grow normally. In the past, many studies focusing on GHD have made use of models of other diseases such as metabolic or infectious diseases. A viable GHD specific model system has not been used previously, thus limiting the interpretation of GHD results. The Bama minipig is unique to Guangxi province and has strong adaptability and disease resistance, and an incredibly short stature, which is especially important for the study of GHD. In addition, studies of GHR knockout Bama minipigs and GHR knockout Bama minipig fibroblast cells generated using CRISPR/Cas9 have not been previously reported. Therefore, the Bama minipig was selected as an animal model and as a tool for the study of GHD in this work. In this study, a Cas9 plasmid with sgRNA targeting the first exon of the GHR gene was transfected into Bama minipig kidney fibroblast cells to generate 22 GHR knockout Bama minipig kidney fibroblast cell lines (12 male monoclonal cells and 10 female monoclonal cells). After culture and identification, 11 of the 12 male clone cell lines showed double allele mutations, and the rate of positive alteration of GHR was 91.67%. Diallelic mutation of the target sequence occurred in 10 female clonal cell lines, with an effective positive mutation rate of 100%. Our experimental results not only showed that CRISPR/Cas9 could efficiently be used for gene editing in Bama minipig cells but also identified a highly efficient target site for the generation of a GHR knockout in other porcine models. Thus, the generation of GHR knockout male and female Bama fibroblast cells could lay a foundation for the birth of a future dwarfism model pig. We anticipate that the "mini" Bama minipig will be of improved use for biomedical and agricultural scientific research and for furthering our understanding of the genetic underpinnings of GHD.


Subject(s)
CRISPR-Cas Systems , Fibroblasts/physiology , Receptors, Somatotropin/genetics , Swine, Miniature/genetics , Animals , Animals, Genetically Modified , Cell Line , Female , Gene Editing , Gene Knockout Techniques , Homozygote , Male , Mutation , Swine
15.
Reprod Domest Anim ; 54(9): 1195-1205, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31228864

ABSTRACT

As a natural plant-derived antitoxin, resveratrol possesses several pharmacological activities. This study aimed to evaluate the effects of resveratrol addition on nuclear maturation, oocyte quality during in vitro maturation (IVM) of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer (SCNT). Our experiments showed that the treatment of porcine oocytes with 5 µM resveratrol during IVM resulted in the highest rate of the first polar body extrusion. Treatment of oocytes with resveratrol had no influence on cytoskeletal dynamics, whereas it significantly increased glucose uptake ability compared to the control oocytes. Oocytes matured with 5 µM resveratrol displayed significantly lower intracellular reactive oxygen species (ROS) levels and higher relative mRNA expression levels of the genes encoding such antioxidant enzymes as catalase (CAT) and superoxide dismutase 1 (SOD1). In addition, resveratrol also prevented onset and progression of programmed cell death in porcine oocytes, which was confirmed by significant upregulation of the anti-apoptotic B-cell lymphoma 2 (BCL-2) gene and significant downregulation of the pro-apoptotic BCL2-associated X (BAX) gene. Furthermore, the blastocyst rates and the blastocyst cell numbers in cloned embryos derived from the oocytes that had matured in the presence of 5 µM resveratrol were significantly increased. In conclusion, supplementation of IVM medium with 5 µM resveratrol improves the quality of porcine oocytes by protecting them from oxidative damage and apoptosis, which leads to the production of meiotically matured oocytes exhibiting enhanced developmental potential following SCNT.


Subject(s)
Embryonic Development/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , Nuclear Transfer Techniques/veterinary , Resveratrol/pharmacology , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis/drug effects , Blastocyst , Female , Gene Expression Regulation, Developmental , Genes, bcl-2 , In Vitro Oocyte Maturation Techniques/methods , Oocytes/drug effects , RNA, Messenger , Reactive Oxygen Species/metabolism , Swine , bcl-2-Associated X Protein/genetics
16.
Development ; 146(13)2019 07 10.
Article in English | MEDLINE | ID: mdl-31189663

ABSTRACT

Epigenetic regulation, including histone-to-protamine exchanges, controls spermiogenesis. However, the underlying mechanisms of this regulation are largely unknown. Here, we report that PHF7, a testis-specific PHD and RING finger domain-containing protein, is essential for histone-to-protamine exchange in mice. PHF7 is specifically expressed during spermiogenesis. PHF7 deletion results in male infertility due to aberrant histone retention and impaired protamine replacement in elongated spermatids. Mechanistically, PHF7 can simultaneously bind histone H2A and H3; its PHD domain, a histone code reader, can specifically bind H3K4me3/me2, and its RING domain, a histone writer, can ubiquitylate H2A. Thus, our study reveals that PHF7 is a novel E3 ligase that can specifically ubiquitylate H2A through binding H3K4me3/me2 prior to histone-to-protamine exchange.


Subject(s)
Histones/metabolism , Protamines/metabolism , Spermatogenesis/genetics , Ubiquitin-Protein Ligases/physiology , Ubiquitination/genetics , Animals , Cells, Cultured , Chromatin Assembly and Disassembly/physiology , Female , Gene Expression Regulation, Developmental , Infertility, Male/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , Testis/metabolism , Ubiquitin-Protein Ligases/genetics
17.
J Cell Physiol ; 234(8): 13413-13422, 2019 08.
Article in English | MEDLINE | ID: mdl-30609033

ABSTRACT

Induction of repeated superovulation with exogenous hormones is widely used in assisted reproductive technology (ART). Though it is generally safe, emerging evidence has indicated that repeated superovulation may compromise oocyte quality. However, few studies have explored how to ameliorate such impairment. Because melatonin has beneficial influences on oocytes in various detrimental environments, we aimed to explore whether melatonin could protect mouse oocytes after repeated superovulation. We found that repeated superovulation markedly reduced meiotic maturation and disrupted spindle organization and chromosome alignment. Furthermore, we observed reduced mitochondrial content and enhanced early apoptosis in oocytes from mice subjected to repeated superovulation. In addition, 5-methylcytosine (5mc) fluorescence intensity was lower in oocytes from experimental mice than in those from control mice, indicating that repeated superovulation disrupts genomic DNA methylation, and elevations in reactive oxygen species levels indicated that repeated superovulation also induces oxidative stress. Conversely, melatonin administration improved oocyte maturation and attenuated the observed defects. Interestingly, supplementation with melatonin during in vitro maturation had the same protective effects on oocytes as in vivo melatonin administration. In summary, our results show that melatonin can improve oocyte quality after repeated superovulation and thus provide a potential strategy to improve ART efficiency.


Subject(s)
Melatonin/pharmacology , Oocytes/drug effects , Superovulation , Animals , Apoptosis/drug effects , DNA Methylation , Female , In Vitro Oocyte Maturation Techniques , Meiosis/drug effects , Melatonin/administration & dosage , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Oocytes/metabolism , Oocytes/pathology , Reactive Oxygen Species/metabolism , Reproductive Techniques, Assisted/adverse effects
18.
Reprod Fertil Dev ; 31(2): 386-394, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30309436

ABSTRACT

The effects of acetyl-l-carnitine (ALC) supplementation during IVM on subsequently vitrified buffalo oocytes were evaluated, followed by determination of the mitochondrial DNA copy number, measurement of mitochondrial membrane potential (MMP) and identification of the lipid profile of oocyte membranes as markers of oocyte quality after vitrification. Supplementation with ALC during IVM significantly improved the rates of oocyte cleavage and morula and blastocyst formation, and increased MMP after vitrification compared with unsupplemented vitrified oocytes (P<0.05). Using a bidirectional orthogonal projection to latent structures discriminant analysis based on positive ion matrix-assisted laser desorption ionisation time-of-flight mass spectrometry data, five phospholipid ions (m/z 728.7 (phosphatidylcholine (PC) 32:3), 746.9 (PC 32:5), 760.6 (PC 34:1), 768.8 (PC P-36:3) and 782.6 (PC 36:4); P<0.05) were identified as significantly more abundant in fresh oocytes than in unsupplemented vitrified oocytes. Meanwhile, three phospholipid ions (m/z 734.6 (PC 32:0), 760.6 (PC 34:1), and 782.6 (PC 36:4); P<0.05) were more abundant in ALC-supplemented vitrified oocytes than in unsupplemented vitrified oocytes. Therefore, supplementation with ALC during IVM may improve buffalo oocyte quality after vitrification by enhancing mitochondrial function and altering the phospholipid composition of vitrified oocyte membranes.


Subject(s)
Acetylcarnitine/pharmacology , Embryonic Development/drug effects , Membrane Lipids/metabolism , Mitochondria/drug effects , Oocytes/drug effects , Animals , Buffaloes , Cryopreservation/methods , Female , In Vitro Oocyte Maturation Techniques , Mitochondria/metabolism , Oocytes/metabolism , Vitrification
19.
Theriogenology ; 123: 83-89, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30292859

ABSTRACT

Primordial germ cells (PGCs) are promising genetic resources for avian studies including modified animals. However, chicken PGCs are slow to proliferate and gradually lose germline competency after long-term culture, which hinders their application in avian biotechnology. Thus, we developed a robust method for the isolation and rapid propagation of PGCs using an indirect co-culture system. PGCs derived from a pair of embryonic chicken gonads were expanded to 1 × 106 within 2 weeks, and no sex bias was observed in. These PGCs presented high capacity of germline transmission and produced donor-derived offspring after injection into the chicken embryos. This system allows the efficient gene-banking of chicken species and can facilitate the production of chickens bearing a desired phenotype via genomic editing.


Subject(s)
Coculture Techniques/veterinary , Germ Cells/physiology , Animals , Cell Differentiation/physiology , Cells, Cultured , Chick Embryo , Cryopreservation/veterinary , Female , Gonads/cytology , Gonads/embryology , Male
20.
Aging (Albany NY) ; 10(12): 3897-3909, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30530915

ABSTRACT

Prolonged culture of metaphase II oocytes is an in vitro aging process that compromises oocyte quality. We tested whether melatonin preserves epigenetic modifications in oocytes after prolonged culture. The porcine oocytes were maturated in vitro for 44 h, and then metaphase II oocytes were continuously cultured in medium supplemented with or without melatonin for 24 h. We found that the parthenogenetic blastocyst formation rate of prolonged-culture oocytes was lower than in fresh oocytes. We further observed that methylation at H3K4me2 and H3K27me2 of oocytes enhanced after prolonged culture. However, 5mc fluorescence intensity was lower in prolonged-culture oocytes than in fresh oocytes. Moreover, the promoter of the imprinted gene NNAT exhibited a higher level of DNA methylation in prolonged-culture oocytes than in fresh oocytes, which was associated with a reduced expression level and glucose uptake capability. Conversely, melatonin improved blastocyst formation rate and preserved histone and DNA methylation modifications, as well as NNAT function in the oocytes after prolonged culture. Notably, DNA methyltransferase inhibitor 5-aza significantly attenuated the protective role of melatonin on genomic DNA methylation. In summary, our results revealed that epigenetic modifications are disrupted in oocytes after prolonged culture, but the changes are reversed by melatonin.


Subject(s)
Epigenesis, Genetic/drug effects , Melatonin/pharmacology , Oocytes/drug effects , Oocytes/physiology , Swine , Animals , Cell Culture Techniques , DNA Methylation , Gene Expression Regulation/drug effects , Glucose/metabolism , In Vitro Oocyte Maturation Techniques/veterinary , Tissue Preservation
SELECTION OF CITATIONS
SEARCH DETAIL
...