Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 57(Pt 3): 630-637, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846766

ABSTRACT

BL19U1, an energy-tunable protein complex crystallography beamline at the Shanghai Synchrotron Radiation Facility, has emerged as one of the most productive MX beamlines since opening to the public in July 2015. As of October 2023, it has contributed to over 2000 protein structures deposited in the Protein Data Bank (PDB), resulting in the publication of more than 1000 scientific papers. In response to increasing interest in structure-based drug design utilizing X-ray crystallography for fragment library screening, enhancements have been implemented in both hardware and data collection systems on the beamline to optimize efficiency. Hardware upgrades include the transition from MD2 to MD2S for the diffractometer, alongside the installation of a humidity controller featuring a rapid nozzle exchanger. This allows users to opt for either low-temperature or room-temperature data collection modes. The control system has been upgraded from Blu-Ice to MXCuBE3, which supports website-mode data collection, providing enhanced compatibility and easy expansion with new features. An automated data processing pipeline has also been developed to offer users real-time feedback on data quality.

2.
J Synchrotron Radiat ; 31(Pt 4): 968-978, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38917022

ABSTRACT

The BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV. The experimental station excels in crystal screening and structure determination, providing cost-effective routine experimental services to numerous users. Given the interdisciplinary and green energy research demands, BL17B beamline has undergone optimization, expanded its range of experimental methods and enhanced sample environments for a more user-friendly testing mode. These methods include single-crystal X-ray diffraction, powder crystal X-ray diffraction, wide-angle X-ray scattering, grazing-incidence wide-angle X-ray scattering (GIWAXS), and fully scattered atom pair distribution function analysis, covering structure detection from crystalline to amorphous states. This paper primarily presents the performance of the BL17B beamline and the application of the GIWAXS methodology at the beamline in the field of perovskite materials.

3.
Nanoscale ; 11(46): 22270-22276, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31483430

ABSTRACT

A general synthetic protocol is developed to afford a series of [MW12O44] (M = Ni2+, Co2+ and Fe3+) clusters with diverse central heteroatoms, by employing [W12O44]16- as the structure-directing precursor. The structures of the [MW12O44] clusters are definitively confirmed by single crystal X-ray diffraction (XRD). The central heteroatoms are monodispersed and capture the "empty" cavity of [W12O44]16- with an 8 coordination number state, as demonstrated by the combination of single crystal structure extended X-ray absorption fine structure (EXAFS) fitting analysis and wavelet transform EXAFS (WTEXAFS). The chemical state of the heteroatoms is confirmed by analyses of high resolution synchrotron radiation photoelectron spectroscopy (HR-SRPES), high resolution X-ray photoelectron spectroscopy (HR-XPS) and EXAFS. The exact components of the [MW12O44] clusters and their thermal stability are also investigated by inductively coupled plasma-mass spectrometry (ICP-MS) and thermal gravimetric analyses (TGA). The powder XRD patterns indicate their phase purity. Moreover, the newly discovered [MW12O44] clusters bridge the Keggin and Silverton polyoxometalate family structures and so unify the 1 : 12 hetero-polyoxometalates.

5.
Nat Commun ; 8: 15938, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28737170

ABSTRACT

For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...