Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 661
Filter
1.
Risk Manag Healthc Policy ; 17: 1349-1359, 2024.
Article in English | MEDLINE | ID: mdl-38803623

ABSTRACT

Objective: This study aimed to clarify the association between suboptimal health status and health-related productivity loss among primary healthcare workers in China. Material and Methods: A field questionnaire survey was conducted with a multistage sampling among primary healthcare workers. The data on sub-health and health-related productivity loss were collected using the Sub-health Measurement Scale Version 1.0 and Work Productivity and Activity Impairment Questionnaire: General Health, respectively. Ordinary least squares regression was used to evaluate the association of the suboptimal health and health-related productivity loss. Subgroup analyses were performed by occupation (physician and nurse). Results: Front-line primary healthcare workers (N = 1709) from 31 provinces in China responded to the survey. Of all participants, 73.43% experienced suboptimal health. The status of being in physical suboptimal health (Coef. = 0.050, p < 0.001, 95% CI = [0.031,0.070]) and mental suboptimal health (Coef. = 0.040, p < 0.001, 95% CI = [0.020,0.059]) status exerted significant effect on the extent of health-related productivity loss among primary healthcare workers in China. Nurses in social adaptation suboptimal health status (Coef. = 0.030, p = 0.027, 95% CI = [0.003,0.057]) had significant effect on health-related productivity loss. Conclusion: The prevalence of suboptimal health is high among the respondents. Providing support for primary healthcare workers from bio-psycho-social aspects is an effective measure to promote their occupational health and improve their productivity.

2.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38767609

ABSTRACT

Hepeviruses have been identified in a broad range of animal hosts, including mammals, birds, and fish. In this study, rodents (n=91) from seven different species and ten pikas (Ochotona curzoniae) were collected in Qinghai Province, China. Using transcriptomic sequencing and confirmatory molecular testing, hepeviruses were detected in 27 of 45 (60 %) long-tailed dwarf hamsters (Cricetulus longicaudatus) and were undetected in other rodents and pika. The complete genome sequences from 14 representative strains were subsequently obtained, and phylogenetic analyses suggested that they represent a novel species within the genus Rocahepevirus, which we tentatively designated as Cl-2018QH. The virus was successfully isolated in human hepatoma (Huh-7) and murine fibroblast (17 Cl-1) cell lines, though both exhibited limited replication as assayed by detection of negative-sense RNA intermediates. A129 immunodeficient mice were inoculated with Cl-2018QH and the virus was consistently detected in multiple organs, despite relatively low viral loads. In summary, this study has described a novel rodent hepevirus, which enhances our knowledge of the genetic diversity of rodent hepeviruses and highlights its potential for cross-species transmission.


Subject(s)
Genome, Viral , Hepevirus , Phylogeny , Animals , China , Cricetinae , Mice , Hepevirus/genetics , Hepevirus/isolation & purification , Hepevirus/classification , Humans , Cell Line , RNA, Viral/genetics
3.
Sci Transl Med ; 16(747): eadl1408, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748772

ABSTRACT

Essential tremor (ET) is the most prevalent movement disorder, characterized primarily by action tremor, an involuntary rhythmic movement with a specific frequency. However, the neuronal mechanism underlying the coding of tremor frequency remains unexplored. Here, we used in vivo electrophysiology, optogenetics, and simultaneous motion tracking in the Grid2dupE3 mouse model to investigate whether and how neuronal activity in the olivocerebellum determines the frequency of essential tremor. We report that tremor frequency was encoded by the temporal coherence of population neuronal firing within the olivocerebellums of these mice, leading to frequency-dependent cerebellar oscillations and tremors. This mechanism was precise and generalizable, enabling us to use optogenetic stimulation of the deep cerebellar nuclei to induce frequency-specific tremors in wild-type mice or alter tremor frequencies in tremor mice. In patients with ET, we showed that deep brain stimulation of the thalamus suppressed tremor symptoms but did not eliminate cerebellar oscillations measured by electroencephalgraphy, indicating that tremor-related oscillations in the cerebellum do not require the reciprocal interactions with the thalamus. Frequency-disrupting transcranial alternating current stimulation of the cerebellum could suppress tremor amplitudes, confirming the frequency modulatory role of the cerebellum in patients with ET. These findings offer a neurodynamic basis for the frequency-dependent stimulation of the cerebellum to treat essential tremor.


Subject(s)
Cerebellum , Essential Tremor , Neurons , Olivary Nucleus , Essential Tremor/physiopathology , Animals , Humans , Olivary Nucleus/physiopathology , Cerebellum/physiopathology , Mice , Male , Optogenetics , Female , Deep Brain Stimulation , Middle Aged , Electroencephalography , Aged
4.
Med Phys ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38734991

ABSTRACT

BACKGROUND: In recent years, genetic algorithms have been applied in the field of nuclear technology design, producing superior optimization results compared to traditional methods. They can be employed in the design and optimization of beam shaping assemblies (BSA) BSA to obtain the desired neutron beams. But it should be noted that the direct combination of Monte Carlo methods with genetic algorithms requires a significant amount of computational resources and time. PURPOSE: Design and optimize BSA more efficiently to achieve neutron beams that meet specified recommendations. METHODS: We propose an approach of NSGA II with crucial variables which are identified by multivariate statistical techniques. This approach significantly reduces the problem sizes, thus reducing the time required for optimization. We illustrate this methodology using the example of BSA design for AB-BNCT. RESULTS: The computational efficiency has tripled with crucial variables. By using NSGA II, we obtained optimized models conforming to both the new and old version IAEA BNCT guidelines through a single optimization process and subjected them to phantom analysis. The results demonstrate that models obtained through this method can meet the IAEA recommendations with deep advantage depth (AD) and high absorbed ratio (AR). CONCLUSION: The genetic algorithm with crucial variables displays tremendous potential in addressing BSA optimization challenges.

5.
Insects ; 15(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786894

ABSTRACT

Despite being the most widespread blister beetle subfamily, Nemognathinae is unfairly understudied in China. In this study, a new genus and species, Sinostenoria yangi Pan, from northern China is described and illustrated. The antennae, elytra, hind wings, and claws of the new genus form a truly unique set of characteristics never observed in other genera of Nemognathini Laporte de Castelnau, 1840. Three species from China are newly recorded and illustrated: Megatrachelus sibiricus (Tauscher, 1812), Zonitomorpha dollei (Fairmaire 1889), and Stenodera djakonovi Aksentjev, 1978. The genus Oreomeloe Tan, 1981, is transferred from the tribe Meloini Gyllenhal, 1910, to Nemognathini based on an examination of the types. Aiming to test the morphology-based placement of the new genus, we conducted molecular phylogenetic analyses using two mitochondrial (COI, 16S) and three nuclear markers (28S, CAD, ITS2). The results confirm our tribal assignment of the new genus and support a clade that consists of Sinostenoriagen. n., Longizonitis Pan and Bologna, 2018, Stenoria cf. grandiceps, and Ctenopus cf. persicus.

6.
ACS Nano ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803167

ABSTRACT

The Pseudomonas aeruginosa biofilm in recalcitrant chronic lung infections not only develops high antimicrobial tolerance but also induces an aberrant host inflammatory response. The metabolic condition plays a vital role in both the antimicrobial susceptibility of bacteria and the inflammatory response of immune cells, thereby offering a potential therapeutic target. Herein, we described a metabolic modulation strategy by using ultrasound-responsive liposomal nanoparticles containing a sonosensitizer and a hypoxia-activated prodrug against biofilm-associated chronic lung infections. Under ultrasound stimulation, the sonosensitizer generates antibacterial reactive oxygen species by oxygen consumption. Subsequently, the oxygen consumption-mediated hypoxia not only induces the anaerobic metabolism of bacteria for antibiotic activation but also triggers the glycolysis pathway of immune cells for inflammatory activation. Such metabolic modulation strategy demonstrated efficient therapeutic efficacy for P. aeruginosa biofilm-induced chronic lung infections in mice models and provides a promising way for combating biofilm-associated chronic infections.

7.
Heliyon ; 10(9): e30511, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765139

ABSTRACT

Objective: To prospectively determine the median effective dose (ED50) of propofol for inhibiting a response to laryngeal mask airway (LMA) insertion when combined with different doses of esketamine in female patients. Methods: A total of 58 female patients (aged 20-60 years, ASAⅠ-Ⅱ) scheduled for elective hysteroscopy were enrolled and randomly divided into 2 groups, one of which was administered 0.2 mg/kg of esketamine (K1 group, n = 28) and the other 0.3 mg/kg of esketamine (K2 group, n = 30). The 2 groups received the corresponding doses of esketamine intravenously, followed by an intravenous injection of propofol (injection time was 30 s). The initial dose of propofol was 2 mg/kg, and the dose ratio of propofol in the adjacent patients was 0.9. If a positive reaction occurred due to LMA insertion, the dose ratio in the next patient was increased by 1 gradient; if not, the dose ratio was decreased by 1 gradient. The ED50, 95 % effective dose (ED95) and 95 % confidence interval (CI) of propofol for inhibiting a response to LMA insertion in the 2 esketamine groups were calculated using probit analysis. Results: The ED50 of propofol for inhibiting a response to LMA insertion in female patients was 1.95 mg/kg (95 % CI, 1.82-2.08 mg/kg) in the K1 group and 1.60 mg/kg (95 % CI, 1.18-1.83 mg/kg) in the K2 group. The ED95 of propofol for inhibiting a response to LMA insertion in female patients was 2.22 mg/kg (95 % CI, 2.09-2.86 mg/kg) in the K1 group and 2.15 mg/kg (95 % CI, 1.88-3.09 mg/kg) in the K2 group. Conclusion: Propofol combined with 0.3 mg/kg of esketamine has low ED50 and ED95 effective doses for inhibiting an LMA insertion response in female patients undergoing hysteroscopy and surgery. There were no significant adverse effects, but the additional dose of propofol and airway pressure were significantly higher than those in the group administered 0.2 mg/kg of esketamine. Based on the results, we recommend the combination of propofol with 0.2 mg/kg esketamine for optimal conditions during LMA insertion in women undergoing hysteroscopy.

8.
Opt Lett ; 49(5): 1357-1360, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427012

ABSTRACT

Flexible engineering of the complex shapes of the surface nanoscale axial photonics (SNAP) bottle microresonators (SBMs) is challenging for future nanophotonic technology applications. Here, we experimentally propose a powerful approach for the one-step fabrication of SBMs with simultaneous negative and positive radius variations, exhibiting a distinctive "bump-well-bump" profile. It is executed by utilizing two focused and symmetrical CO2 laser beams exposed on the fiber surface for only several hundred milliseconds. The spectral characteristics of different eigenmodes are analyzed, providing deep insights into the complex physical processes during the CO2 laser exposure. The shapes of the SBMs can be flexibly adjusted by the exposure time, laser power, and applied pre-strains. As a proof of this technique, the developed approach enables the efficient production of a bat SBM, ensuring a uniform field amplitude of the bat mode over the length exceeding 120 µm with 7% deviation. Our proposed technique provides a powerful technique for the efficient fabrication of SBMs with predetermined shapes, laying the groundwork for its applications on microscale optical signal processing, quantum computing, and so on.

9.
BMC Genomics ; 25(1): 262, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459433

ABSTRACT

Plague, as an ancient zoonotic disease caused by Yersinia pestis, has brought great disasters. The natural plague focus of Marmota himalayana in the Qinghai-Tibet Plateau is the largest, which has been constantly active and the leading source of human plague in China for decades. Understanding the population genetics of M. himalayana and relating that information to the biogeographic distribution of Yersinia pestis and plague outbreaks are greatly beneficial for the knowledge of plague spillover and arecrucial for pandemic prevention. In the present research, we assessed the population genetics of M. himalayana. We carried out a comparative study of plague outbreaks and the population genetics of M. himalayana on the Qinghai-Tibet Plateau. We found that M. himalayana populations are divided into two main clusters located in the south and north of the Qinghai-Tibet Plateau. Fourteen DFR genomovars of Y. pestis were found and exhibited a significant region-specific distribution. Additionally, the increased genetic diversity of plague hosts is positively associated with human plague outbreaks. This insight gained can improve our understanding of biodiversity for pathogen spillover and provide municipally directed targets for One Health surveillance development, which will be an informative next step toward increased monitoring of M. himalayana dynamics.


Subject(s)
Marmota , Yersinia pestis , Animals , Humans , Tibet/epidemiology , China/epidemiology , Disease Outbreaks , Yersinia pestis/genetics , Genetic Variation
10.
Huan Jing Ke Xue ; 45(2): 1080-1089, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471945

ABSTRACT

Tetrachloroethylene (PCE) and trichloroethylene (TCE) are typical volatile halogenated organic compounds in groundwater that pose serious threats to the ecological environment and human health. To obtain an anaerobic microbial consortium capable of efficiently dechlorinating PCE and TCE to a non-toxic end product and to explore its potential in treating contaminated groundwater, an anaerobic microbial consortium W-1 that completely dechlorinated PCE and TCE to ethylene was obtained by repeatedly feeding PCE or TCE into the contaminated groundwater collected from an industrial site. The dechlorination rates of PCE and TCE were (120.1 ±4.9) µmol·ï¼ˆL·d)-1 and (172.4 ±21.8) µmol·ï¼ˆL·d)-1 in W-1, respectively. 16S rRNA gene amplicon sequencing and quantitative PCR (qPCR) showed that the relative abundance of Dehalobacter increased from 1.9% to 57.1%, with the gene copy number increasing by 1.7×107 copies per 1 µmol Cl- released when 98.3 µmol of PCE was dechlorinated to cis-1,2-dichloroethylene (cis-1,2-DCE). The relative abundance of Dehalococcoides increased from 1.1% to 53.8% when cis-1,2-DCE was reductively dechlorinated to ethylene. The growth yield of Dehalococcoides gene copy number increased by 1.7×108 copies per 1 µmol Cl- released for the complete reductive dechlorination of PCE to ethylene. The results indicated that Dehalobacter and Dehalococcoides cooperated to completely detoxify PCE. When TCE was used as the only electron acceptor, the relative abundance of Dehalococcoides increased from (29.1 ±2.4)% to (7.7 ±0.2)%, and gene copy number increased by (1.9 ±0.4)×108 copies per 1 µmol Cl- released, after dechlorinating 222.8 µmol of TCE to ethylene. The 16S rRNA gene sequence of Dehalococcoides LWT1, the main functional dehalogenating bacterium in enrichment culture W-1, was obtained using PCR and Sanger sequencing, and it showed 100% similarity with the 16S rRNA gene sequence of D. mccartyi strain 195. The anaerobic microbial consortium W-1 was also bioaugmented into the groundwater contaminated by TCE at a concentration of 418.7 µmol·L-1. The results showed that (69.2 ±9.8)% of TCE could be completely detoxified to ethylene within 28 days with a dechlorination rate of (10.3 ±1.5) µmol·ï¼ˆL·d)-1. This study can provide the microbial resource and theoretical guidance for the anaerobic microbial remediation in PCE or TCE-contaminated groundwater.


Subject(s)
Chloroflexi , Ethylene Dichlorides , Tetrachloroethylene , Trichloroethylene , Humans , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Ethylenes , Dichloroethylenes , Biodegradation, Environmental , Chloroflexi/genetics
12.
Plant Cell Environ ; 47(6): 1941-1956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38369767

ABSTRACT

While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.


Subject(s)
Glycine max , Indoles , Plant Roots , Salt Stress , Streptomyces , Glycine max/physiology , Glycine max/microbiology , Glycine max/growth & development , Glycine max/drug effects , Streptomyces/physiology , Plant Roots/physiology , Plant Roots/microbiology , Plant Roots/metabolism , Indoles/metabolism , Salt Tolerance , Gene Expression Regulation, Plant/drug effects
13.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168990

ABSTRACT

The throughput of mass spectrometers and the amount of publicly available metabolomics data are growing rapidly, but analysis tools such as molecular networking and Mass Spectrometry Search Tool do not scale to searching and clustering billions of mass spectral data in metabolomics repositories. To address this limitation, we designed MASST+ and Networking+, which can process datasets that are up to three orders of magnitude larger than those processed by state-of-the-art tools.

14.
Angew Chem Int Ed Engl ; 63(13): e202319728, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38285535

ABSTRACT

Organic molecules bearing chiral sulfur stereocenters exert a great impact on asymmetric catalysis and synthesis, chiral drugs, and chiral materials. Compared with acyclic ones, the catalytic asymmetric synthesis of thio-heterocycles has largely lagged behind due to the lack of efficient synthetic strategies. Here we establish the first modular platform to access chiral thio-oxazolidinones via Pd-catalyzed asymmetric [3+2] annulations of vinylethylene carbonates with sulfinylanilines. This protocol is featured by readily available starting materials, and high enantio- and diastereoselectivity. In particular, an unusual effect of a non-chiral supporting ligand on the diastereoselectivity was observed. Possible reaction mechanisms and stereocontrol models were proposed.

15.
Pest Manag Sci ; 80(4): 2001-2010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38096203

ABSTRACT

BACKGROUND: Wheat Fusarium crown rot (FCR) is a serious problem primarily caused by Fusarium pseudograminearum, a pathogenic agent known to produce mycotoxins, including deoxynivalenol (DON). Cyclobutrifluram, a novel succinate dehydrogenase inhibitor devised by Syngenta, has immense potential to control both nematodes and Fusarium diseases. However, its efficacy in combating Fusarium species, its ability to prevent and reverse the detrimental effects of FCR, and its impact on the production of DON by F. pseudograminearum are yet to be fully ascertained. RESULTS: Cyclobutrifluram exhibited substantial inhibitory activity against Fusarium species, with half-maximal effective concentration values ranging from 0.0021-0.0647 µg mL-1 . It demonstrated significant inhibitory activity toward three developmental stages of F. pseudograminearum, F. graminearum and F. asiaticum. Furthermore, cyclobutrifluram showed both protective and curative activities against FCR and was rapidly absorbed by roots and transported to wheat stems and leaves. Cyclobutrifluram could also decrease DON production by F. pseudograminearum. CONCLUSION: This investigation has revealed the potential of cyclobutrifluram as a formidable candidate fungicide, particularly in its ability to effectively combat FCR and other Fusarium-related ailments. This novel compound has exceptional pathogen-fighting capabilities, coupled with remarkable systemic translocation properties and a notable ability to reduce the production of DON. © 2023 Society of Chemical Industry.


Subject(s)
Fusarium , Triticum , Succinic Acid , Succinate Dehydrogenase , Plant Diseases/prevention & control , Succinates
16.
Chemistry ; 30(10): e202303476, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38065837

ABSTRACT

The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.

17.
Endocr J ; 71(2): 129-137, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38104978

ABSTRACT

Herein, we aimed to develop an easily available and efficient screening method for diabetic peripheral neuropathy (DPN) suitable for primary care settings, emphasizing simplicity, speed, and accuracy. Nerve conduction studies were conducted on 214 patients with diabetes, encompassing the outcomes of five distinct assessments: diabetic neuropathy symptom (DNS), vibration perception threshold (VPT), and nerve screening. The diagnostic accuracy of the VPT and nerve screening was evaluated by comparing them with that of the nerve conduction study. To assess diagnostic efficacy, various combinations were examined, including DNS combined with VPT, pain, temperature, touch, and ankle reflex. The diagnostic performance of DNS was superior to that of the five neurological screening items and VPT, with sensitivity, specificity, and accuracy of 0.68, 0.81, and 0.73, respectively. Among the two combined methods, "DNS + ankle reflex" was identified as having the highest diagnostic value, with an area under the curve, a sensitivity, a specificity, and an accuracy of 0.81, 0.89, 0.70, and 0.80, respectively. Furthermore, a combination of "DNS + ankle reflex + touch + pain + VPT" achieved the best performance among the five combinations, with an area under the curve, sensitivity, specificity, and accuracy of 0.85, 0.93, 0.68, and 0.81, respectively. The combination of DNS, ankle reflex, touch, pain, and VPT methods showed the highest diagnostic value for DPN. However, considering factors including accuracy, time, and economic cost, we recommend using a simpler combination of DNS and ankle reflex for large-scale screening of patients with DPN.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Humans , Diabetic Neuropathies/diagnosis , Ankle , Perception , Reflex , Pain/diagnosis , Pain/etiology
18.
J Sci Food Agric ; 104(1): 257-265, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37552783

ABSTRACT

BACKGROUND: Phenolic endocrine-disrupting chemicals (EDCs) are widespread and easily ingested through the food chain. They pose a serious threat to human health. Magnetic solid-phase extraction (MSPE) is an effective sample pre-treatment technology to determine traces of phenolic EDCs. RESULTS: Magnetic covalent organic framework (COF) (Fe3 O4 @COF) nanospheres were prepared and characterized. The efficient and selective extraction of phenolic EDCs relies on a large specific surface and the inherent porosity of COFs and hydrogen bonding, π-π, and hydrophobic interactions between COF shells and phenolic EDCs. Under optimal conditions, the proposed magnetic solid-phase extraction-high-performance liquid chromatography-ultra violet (MSPE-HPLC-UV) based on the metallic covalent organic framework method for phenolic EDCs shows good linearities (0.002-6 µg mL-1 ), with R2 of 0.995 or higher, and low limits of detection (6-1.200 ng mL-1 ). CONCLUSION: Magnetic covalent organic frameworks (Fe3 O4 @COFs) with good MSPE performance for phenolic EDCs were synthesized by the solvothermal method. The magnetic covalent organic framework-based MSPE-HPLC-UV method was applied successfully to determine phenolic EDCs in beverage and water samples with satisfactory recoveries (90.200%-123%) and relative standard deviations (2.100%-12.100%). © 2023 Society of Chemical Industry.


Subject(s)
Endocrine Disruptors , Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Chromatography, High Pressure Liquid , Beverages , Solid Phase Extraction/methods , Phenols , Magnetic Phenomena , Water/chemistry , Limit of Detection
19.
Environ Pollut ; 344: 123255, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38159631

ABSTRACT

The toxic effects of excessive manganese (Mn) levels in the environment have led to a severe public health concern. Ferroptosis is a newly form of cell death relying on iron, inherent to pathophysiological processes of psychiatric disorders, such as anxiety and depression-like behaviors. Excessive Mn exposure causes various neurological effects, including neuronal death and mood disorders. Whether Mn exposure causes anxiety and depression-like behaviors, and the underlying mechanisms of Mn-induced ferroptosis have yet to be determined. Here, Mn-exposed mice showed anxiety-like behavior. We also confirmed the accumulation of ferrous ion (Fe2+), lipid peroxidation, and depletion of antioxidant defense system both in vitro and in vivo Mn-exposed models, suggesting that Mn exposure can induce ferroptosis. Furthermore, Mn exposure downregulated the expression of miR-125b-2-3p. In turn, overexpression of miR-125b-2-3p alleviated the Mn-induced ferroptosis by targeting Transferrin receptor protein 1 (TFR1). In summary, this novel study established the propensity of Mn to cause anxiety-like behavior, an effect that was regulated by miR-125b-2-3p and ensuing ferroptosis secondary to the targeting of TFR1. These results offer promising targets for the prevention and treatment of Mn-induced neurotoxicity.


Subject(s)
Ferroptosis , MicroRNAs , Humans , Animals , Mice , Manganese/toxicity , Anxiety/chemically induced , Iron/toxicity , Receptors, Transferrin/genetics
20.
Mater Today Bio ; 23: 100877, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38075249

ABSTRACT

Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.

SELECTION OF CITATIONS
SEARCH DETAIL
...