Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 10(4): e0157122, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35938860

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) is a zoonotic pathogen with the ability to cause severe diseases like hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the key virulence factor in STEC and can be classified into two types, Stx1 and Stx2, and different subtypes. Stx2k is a newly reported Stx2 subtype in E. coli strains from diarrheal patients, animals, and raw meats exclusively in China so far. To understand the reservoir of Stx2k-producing E. coli (Stx2k-STEC), we investigated Stx2k-STEC strains in goat herds and examined their genetic characteristics using whole-genome sequencing. A total of 448 STEC strains were recovered from 2,896 goat fecal samples, and 37.95% (170/448) were Stx2k-STEC. Stx2k-STEC strains of serotype O93:H28 and sequence type 4038 (ST4038) were the most predominant and were detected over several years. Notably, 55% of Stx2k-STEC strains carried the heat-labile toxin (LT)-encoding gene (elt) defining enterotoxigenic E. coli (ETEC), thereby exhibiting the hybrid STEC/ETEC pathotype. Stx2k-converting prophage genomes clustered into four groups and exhibited high similarity within each group. Strains from patients, raw meat, sheep, and goats were intermixed distributed in the phylogenetic tree, indicating the risk for cross-species spread of Stx2k-STEC and pathogenic potential for humans. Further studies are required to investigate the Stx2k-STEC strains in other reservoirs and to understand the mechanism of persistence in these hosts. IMPORTANCE Strains of the recently reported Stx2k-STEC have been circulating in a variety of sources over time in China. Here, we show a high prevalence of Stx2k-STEC in goat herds. More than half of the strains were of the hybrid STEC/ETEC pathotype. Stx2k-STEC strains of predominant serotypes have been widespread in the goat herds over several years. Stx2k-converting prophages have exhibited a high level of similarity across geographical regions and time and might be maintained and transmitted horizontally. Given that goat-derived Stx2k-STEC strains share similar genetic backbones with patient-derived strains, the high prevalence of Stx2k-STEC in goats suggests that there is a risk of cross-species spread and that these strains may pose pathogenetic potential to humans. Our study thus highlights the need to monitor human Stx2k-STEC infections in this region and, by extension, in other geographic locations.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Goats , Humans , Phylogeny , Prevalence , Sheep , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/genetics
2.
Gels ; 8(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35448145

ABSTRACT

The increasing preference for minimally invasive surgery requires novel soft materials that are injectable, with rapid self-healing abilities, and biocompatible. Here, by utilizing the synergetic effect of hydrophobic interaction and quadruple hydrogen bonding, an injectable supramolecular hydrogel with excellent self-healing ability was synthesized. A unique ABA triblock copolymer was designed containing a central poly(ethylene oxide) block and terminal poly(methylmethacrylate) (PMMA) block, with ureido pyrimidinone (UPy) moieties randomly incorporated (termed MA-UPy-PEO-UPy-MA). The PMMA block could offer a hydrophobic microenvironment for UPy moieties in water and thus boost the corresponding quadruple hydrogen bonding interaction of Upy-Upy dimers. Owing to the synergetic effect of hydrophobicity and quadruple hydrogen bonding interaction, the obtained MA-UPy-PEO-UPy-MA hydrogel exhibited excellent self-healing properties, and injectable capability, as well as superior mechanical strength, and therefore, it holds great promise in tissue engineering applications, including in cell support and drug release.

3.
Macromol Rapid Commun ; 42(19): e2100342, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34347319

ABSTRACT

Lithium-sulfur batteries (LSBs) suffer from well-known fast capacity losses despite their extremely high theoretical capacity and energy density. These losses are caused by dissolution of lithium polysulfide (LiPS) in ether-based electrolytes and have become the main bottleneck to widespread applications of LSBs. Therefore, there is a significant need for electrode materials that have a strong adsorption capacity for LiPS. Herein, a waterborne polyurethane (WPUN) containing sulfamic acid (NH2 SO3 H) polymer is designed and synthesized as an aqueous-based, ecofriendly binder by neutralizing sulfamic acid with a tung oil-based polyurethane prepolymer. UV-vis spectroscopy shows that the WPUN strongly immobilizes LiPS and thus is an effective inhibitor of the LiPS. Moreover, the WPUN binder has excellent adhesive and mechanical properties that improve the integrity of sulfur cathodes. The WPUN-based cathodes exhibit a significant improvement in their specific capacity and maintain a capacity of 617 mAh g-1 after 200 cycles at 0.5C. Besides, the LSBs assembled with the WPUN-based cathodes show good rate performance from 0.2C (737 mAh g-1 ) to 4C (586 mAh g-1 ), which is significantly higher than that of LSBs assembled with a commercial polymer binder. The structural design of the presented binder provides a new perspective for obtaining high-performance LSBs.


Subject(s)
Lithium , Polyurethanes , Electrodes , Plant Oils , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL
...