Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 15(6): 757-67, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15899963

ABSTRACT

Xanthomonas campestris pathovar campestris (Xcc) is the causative agent of crucifer black rot disease, which causes severe losses in agricultural yield world-wide. This bacterium is a model organism for studying plant-bacteria interactions. We sequenced the complete genome of Xcc 8004 (5,148,708 bp), which is highly conserved relative to that of Xcc ATCC 33913. Comparative genomics analysis indicated that, in addition to a significant genomic-scale rearrangement cross the replication axis between two IS1478 elements, loss and acquisition of blocks of genes, rather than point mutations, constitute the main genetic variation between the two Xcc strains. Screening of a high-density transposon insertional mutant library (16,512 clones) of Xcc 8004 against a host plant (Brassica oleraceae) identified 75 nonredundant, single-copy insertions in protein-coding sequences (CDSs) and intergenic regions. In addition to known virulence factors, full virulence was found to require several additional metabolic pathways and regulatory systems, such as fatty acid degradation, type IV secretion system, cell signaling, and amino acids and nucleotide metabolism. Among the identified pathogenicity-related genes, three of unknown function were found in Xcc 8004-specific chromosomal segments, revealing a direct correlation between genomic dynamics and Xcc virulence. The present combination of comparative and functional genomic analyses provides valuable information about the genetic basis of Xcc pathogenicity, which may offer novel insight toward the development of efficient methods for prevention of this important plant disease.


Subject(s)
Bacterial Proteins/genetics , Genome, Bacterial , Virulence Factors/genetics , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Brassica/genetics , Brassica/microbiology , DNA Transposable Elements , Molecular Sequence Data , Mutagenesis, Insertional , Operator Regions, Genetic , Plant Diseases/genetics , Sequence Analysis, DNA
2.
Nature ; 422(6934): 888-93, 2003 Apr 24.
Article in English | MEDLINE | ID: mdl-12712204

ABSTRACT

Leptospirosis is a widely spread disease of global concern. Infection causes flu-like episodes with frequent severe renal and hepatic damage, such as haemorrhage and jaundice. In more severe cases, massive pulmonary haemorrhages, including fatal sudden haemoptysis, can occur. Here we report the complete genomic sequence of a representative virulent serovar type strain (Lai) of Leptospira interrogans serogroup Icterohaemorrhagiae consisting of a 4.33-megabase large chromosome and a 359-kilobase small chromosome, with a total of 4,768 predicted genes. In terms of the genetic determinants of physiological characteristics, the facultatively parasitic L. interrogans differs extensively from two other strictly parasitic pathogenic spirochaetes, Treponema pallidum and Borrelia burgdorferi, although similarities exist in the genes that govern their unique morphological features. A comprehensive analysis of the L. interrogans genes for chemotaxis/motility and lipopolysaccharide synthesis provides a basis for in-depth studies of virulence and pathogenesis. The discovery of a series of genes possibly related to adhesion, invasion and the haematological changes that characterize leptospirosis has provided clues about how an environmental organism might evolve into an important human pathogen.


Subject(s)
Genes, Bacterial/genetics , Genome, Bacterial , Leptospira interrogans/genetics , Leptospira interrogans/pathogenicity , Bacterial Adhesion/genetics , Chemotaxis , Chromosomes, Bacterial/genetics , Humans , Leptospira interrogans/cytology , Leptospira interrogans/metabolism , Lipopolysaccharides/biosynthesis , Molecular Sequence Data , Open Reading Frames/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Virulence/genetics
3.
Proc Natl Acad Sci U S A ; 99(11): 7640-5, 2002 May 28.
Article in English | MEDLINE | ID: mdl-12032336

ABSTRACT

The physiologic actions of retinoic acids (RAs) are mediated through RA receptors (RARs) and retinoid X receptors (RXRs). The RAR(alpha) gene has drawn particular attention because it is the common target in all chromosomal translocations in acute promyelocytic leukemia (APL), a unique model in cancer research that responds to the effect of RA. In the great majority of patients with APL, RAR(alpha) is fused to the PML gene as a result of the t(15;17) translocation. Three distinct types of PML-RAR(alpha) transcripts, long (L), short (S), and variant (V), were identified. The V-type is characterized by truncation of exon 6 of PML and in some cases by the insertion of a variable "spacer" sequence between the truncated PML and RAR(alpha) mRNA fusion partners, although the precise mechanisms underlying formation of the V-type transcript remain unclear. To get further insights into the molecular basis of the t(15;17), we sequenced the entire genomic DNA region of RAR(alpha). Of note, all previously reported "spacer" sequences in V-type transcripts were found in intron 2 of the RAR(alpha) gene and most of these sequences were flanked by gt splice donor sites. In most cases, these "cryptic" coding sequences maintained the ORF of the chimeric transcript. Interestingly, two cases with a relatively long spacer sequence showed APL cellular and clinical resistance to RA treatment. In these cases, the aberrant V-type PML-RAR(alpha) protein displayed increased affinity to the nuclear corepressor protein SMRT, providing further evidence that RA exerts the therapeutic effect on APL through modulation of the RAR-corepressor interaction. Finally, among patients with the L- or S-type PML-RAR(alpha) fusion transcript, some consensus motifs were identified at the hotspots of the chromosome 17q breakpoints within intron 2 of RAR(alpha), strengthening the importance of this intron in the molecular pathogenesis of APL.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Genetic Variation , Leukemia, Promyelocytic, Acute/genetics , Neoplasm Proteins/genetics , Oncogene Proteins, Fusion/genetics , Receptors, Retinoic Acid/genetics , Transcription, Genetic , Tretinoin/therapeutic use , Base Sequence , Humans , Introns , Leukemia, Promyelocytic, Acute/classification , Leukemia, Promyelocytic, Acute/drug therapy , Molecular Sequence Data , Retinoic Acid Receptor alpha , Retinoid X Receptors , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...