Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Zhejiang Univ Sci B ; 14(4): 289-98, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23549846

ABSTRACT

The Agrobacterium-mediated transformation system is the most commonly used method in soybean transformation. Screening of soybean genotypes favorable for Agrobacterium-infection and tissue regeneration is the most important step to establish an efficient genetic transformation system. In this study, twenty soybean genotypes that originated from different soybean production regions in China were screened for transient infection, regeneration capacity, and stable transgenic efficiency. Three genotypes, Yuechun 04-5, Yuechun 03-3, and Tianlong 1, showed comparable stable transgenic efficiencies with that of the previously reported American genotypes Williams 82 and Jack in our experimental system. For the Tianlong 1, the average stable transformation efficiency is 4.59%, higher than that of control genotypes (Jack and Williams 82), which is enough for further genomic research and genetic engineering. While polymerase chain reaction (PCR), LibertyLink strips, and ß-glucuronidase (GUS) staining assays were used to detect the insertion and expression of the transgene, leaves painted with 135 mg/L Basta could efficiently identify the transformants.


Subject(s)
Agrobacterium/genetics , Genetic Markers/genetics , Glycine max/genetics , Glycine max/microbiology , Plant Leaves/genetics , Polymorphism, Single Nucleotide/genetics , Transformation, Bacterial/genetics , Genetic Testing , Genotype , Glycine max/classification
2.
J Phys Chem B ; 110(51): 25761-8, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181218

ABSTRACT

Molecular dynamics (MD) simulations were performed to study the structural properties of water molecules confined in functionalized carbon nanotubes (CNTs). Four CNTs, two armchair-type (6, 6), (7, 7) and two zigzag-type (10, 0), (12, 0) CNTs, representing different helicities and different diameters, were chosen and functionalized at their open ends by the hydrophilic -COOH and the hydrophobic -CH3 groups. The structural properties of water molecules inside the functionalized CNTs, including the orientation distributions of dipole moment and O-H bonds, the length of the single-file water chain, and the average number of hydrogen bonds, were analyzed during a process of simulations. MD simulation results in this work showed that the -CH3 functional groups exert little special effects on the structural properties of water molecules. It is mainly due to the relatively small size of the -CH3 group and its hydrophobic nature, which is consistent with hydrophobic CNTs. For CNTs functionalized by -COOH groups, the configurations of -COOH groups, incurvature or excurvature, determine whether water molecules can enter the CNTs. The incurvature or excurvature configurations of -COOH groups are the results of synergy effects of the CNTs' helicity and diameter and control the flow direction of water molecules in CNTs.

3.
Phys Chem Chem Phys ; 8(33): 3836-44, 2006 Sep 07.
Article in English | MEDLINE | ID: mdl-19817043

ABSTRACT

Carbon nanotubes show exceptional properties that render them promising candidates as building blocks for nanostructured materials. Many ambitious applications, ranging from molecular detection to membrane separation, require the delivery of fluids, in particular aqueous solutions, through the interior of carbon nanotubes (CNT). To foster such applications, an understanding of the properties of water molecules confined in carbon nanotubes at the molecular level is needed. In this work we report a study of temperature and helicity effects on static properties of water molecules confined in modified CNT by molecular dynamics simulations. It was found that the temperature has little effect on the confined water molecules in carbon nanotubes. But on the other hand, the simulation results showed that because of the difference in helicity between (6, 6) and (10, 0) CNTs, the modification by hydrophilic carboxyl acid functional groups (-COOH) results in a different response to the CNTs, which in turn have control over the flow direction of water molecules in these CNTs.


Subject(s)
Nanotubes, Carbon/chemistry , Water/chemistry , Computer Simulation , Hydrogen Bonding , Oxygen/chemistry , Temperature , Thermodynamics
4.
J Chem Phys ; 120(22): 10728-35, 2004 Jun 08.
Article in English | MEDLINE | ID: mdl-15268098

ABSTRACT

The density profiles and the diffusion behavior of fluid argon confined in micropores were studied by molecular-dynamics simulations. The effects of pore size (width), temperature and number density on the density profiles and the self-diffusion coefficients in micropores were simulated with pore widths from 0.6 to 4.0 nm. The density profiles are greatly affected by the pore size. Strong inhomogeneities in the channel direction and vapor-liquid phase separation in the micropores were observed when initial conditions were chosen in the coexistence region of the fluid. The self-diffusion coefficient in the channel direction in the pores was found to be much lower than in the bulk, and decreasing with decreasing pore size, decreasing temperature, and increasing density.

SELECTION OF CITATIONS
SEARCH DETAIL
...