Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174249, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936740

ABSTRACT

Nanoplastics (NPs) present a hidden risk to organisms and the environment via migration and enrichment. Detecting NPs remains challenging because of their small size, low ambient concentrations, and environmental variability. There is an urgency to exploit detection approaches that are more compatible with real-world environments. Herein, this study provides a surface-enhanced Raman spectroscopy (SERS) technique for the in situ reductive generation of silver nanoparticles (Ag NPs), which is based on photoaging-induced modifications in NPs. The feasibility of generating Ag NPs on the surface of NPs was derived by exploring the photoaging mechanism, which was then utilized to SERS detection. The approach was applied successfully for the detection of polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET) NPs with excellent sensitivity (e.g., as low as 1 × 10-6 mg/mL for PVC NPs, and an enhancement factor (EF) of up to 2.42 × 105 for small size PS NPs) and quantitative analytical capability (R2 > 0.95579). The method was successful in detecting NPs (PS NPs) in lake water. In addition, satisfactory recoveries (93.54-105.70 %, RSD < 12.5 %) were obtained by spiking tap water as well as lake water, indicating the applicability of the method to the actual environment. Therefore, the proposed approach offers more perspectives for testing real environmental NPs.

2.
Ageing Res Rev ; 95: 102223, 2024 03.
Article in English | MEDLINE | ID: mdl-38325753

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Postoperative Cognitive Complications , Humans , Astrocytes/pathology , Postoperative Cognitive Complications/pathology , Neuroinflammatory Diseases , Quality of Life , Alzheimer Disease/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Amyloid beta-Peptides
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166992, 2024 03.
Article in English | MEDLINE | ID: mdl-38128844

ABSTRACT

Traumatic brain injury (TBI), a significant contributor to mortality and morbidity worldwide, is a devastating condition characterized by initial mechanical damage followed by subsequent biochemical processes, including neuroinflammation. Astrocytes, the predominant glial cells in the central nervous system, play a vital role in maintaining brain homeostasis and supporting neuronal function. Nevertheless, in response to TBI, astrocytes undergo substantial phenotypic alternations and actively contribute to the neuroinflammatory response. This article explores the multifaceted involvement of astrocytes in neuroinflammation subsequent to TBI, with a particular emphasis on their activation, release of inflammatory mediators, modulation of the blood-brain barrier, and interactions with other immune cells. A comprehensive understanding the dynamic interplay between astrocytes and neuroinflammation in the condition of TBI can provide valuable insights into the development of innovative therapeutic approaches aimed at mitigating secondary damage and fostering neuroregeneration.


Subject(s)
Astrocytes , Brain Injuries, Traumatic , Humans , Neuroinflammatory Diseases , Brain Injuries, Traumatic/complications , Brain , Inflammation/complications
4.
Chin Med ; 18(1): 153, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996917

ABSTRACT

BACKGROUND: The successful launch of icaritin, a therapeutic drug for liver cancer derived from Epimedium brevicornu, has provided new impetus for the development of prenylated flavonoids in the field of oncology. Flemingia macrophylla is reported to contain characteristic prenylated flavonoids which can regulate the p53 protein. We aimed to isolate these constituents and conduct activity evaluation, structure-activity relationship, and mechanism studies to provide candidate compounds for antitumor drug development. METHODS: In this study, chromatographic techniques combined with spectroscopic methods were used to separate, purify, and identify the constituents of Flemingia macrophylla methanol extract. The cytotoxic activity of the constituents was evaluated using an MTT assay with A549 and H1975 cells as the model. The binding mechanism between the compounds and the p53 protein was investigated with molecular docking and validated with cellular thermal shift assay (CETSA). Western blotting (WB) was employed to detect the expression of p53 protein and apoptosis-related proteins in cells. RESULTS: Chiral HPLC separation of racemates 1 and 7 provided two pairs of undescribed enantiomers (1a/1b and 7a/7b), along with eight known compounds (2 - 9) isolated from Flemingia macrophylla roots. Their structures were elucidated by spectroscopic analysis, and the absolute configurations of the enantiomers were determined from experimental and calculated electronic circular dichroism data. Compounds 1 - 7, and the non-prenyl analogues 10 - 13, were evaluated for cytotoxic activity against the human lung cancer A549 and H1975 cell line. Compounds 5 - 7 displayed better cytotoxicity than the positive control icaritin in A549 and H1975, with IC50 values ranging from 4.50 to 19.83 µmol·L-1 and < 5 µmol·L-1, respectively. The structure-activity relationships of the chromone or flavonoid analogues against A549 cells were discussed. Molecular docking results demonstrated that compound 7a has strong interaction with p53 and WB indicated that 7a induced apoptosis by increasing the p53 protein, decreasing the anti-apoptotic protein Bcl-2, and activating the caspase family in A549 cells. These results suggest that prenylated flavonoids are potential p53 protein activators. CONCLUSION: This study demonstrates that Flemingia macrophylla is rich in prenylated flavonoid constituents, among which compounds 5 and 7 exhibited significant cytotoxic activity against A549 cells and served as reference candidates for the design and development of prenylated compounds as antitumor therapeutic drugs.

5.
Front Mol Neurosci ; 15: 960657, 2022.
Article in English | MEDLINE | ID: mdl-36329693

ABSTRACT

Patients with Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), stroke, and postoperative neurocognitive disorder (POND) are commonly faced with neurocognitive disorders with limited therapeutic options. Some non-coding ribonucleic acids (ncRNAs) are involved in the development of various brain cognitive disorders. Circular RNAs (circRNAs), a typical group of ncRNAs, can function as competitive endogenous RNAs (ceRNAs) to dysregulate shared microRNAs (miRNAs) at post-transcription level, inhibiting regulation of miRNAs on their targeted messenger RNAs (mRNAs). circRNAs are abundant in central nervous system (CNS) diseases and cause brain disorders, but the exact roles of circRNAs are unclear. The crosstalk between circRNA, miRNA, and mRNA plays an important role in the pathogenesis of these neurocognitive dysfunction diseases and abnormal conditions including AD, PD, stroke, TBI, and POND. In this review, we summarized the participation of circRNA in neuroglial damage and inflammation. Finally, we aimed to highlight the regulatory mechanisms of circRNA-miRNA-mRNA networks in the development of various brain cognitive disorders and provide new insights into the therapeutics of these diseases.

6.
ACS Chem Neurosci ; 12(9): 1480-1486, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33899470

ABSTRACT

Postoperative recovery for patients (particularly elderly) will be commonly encountered for postoperative neurocognitive disorders. Although effort has been undertaken to better understand and prevent these disorders, little improvement has been observed, due to largely unknown mechanisms. Emerging evidence indicates that noncoding RNAs including microRNA(s), long noncoding RNA(s), and circular RNA(s) are promising biomarkers for diagnosis, prognosis, and novel pathways to reveal mechanisms of postoperative neurocognitive disorders. However, there has been little crosstalk between noncoding RNA biology and development of postoperative neurocognitive disorders. We discuss the major noncoding RNAs in mechanisms, diagnosis, risk-stratification, prognosis, and treatment in postoperative neurocognitive disorders in a novel approach.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Aged , Humans , MicroRNAs/genetics , Neurocognitive Disorders , RNA, Circular , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics
7.
RSC Adv ; 11(16): 9557-9567, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35423436

ABSTRACT

Ab initio molecular dynamics simulations (AIMD) are systematically performed to study the Vibrational Energy Redistribution (VER) in solid nitromethane (NM) by combining normal mode decomposition and short-time Fourier transform technique. After the selective excitations of all fourteen intramolecular vibrational modes above 400 cm-1, four three-dimensional (3D) excitation and detected vibrational spectra are obtained. The evolution of the kinetic energy proportion of all vibrations are also given and discussed quantitatively. These results show that, as the daughter modes, NO2 symmetric stretches, CH3 stretches and bends are usually excited quickly and relatively conspicuously compared with the other vibrations. Interestingly, we found that, although the stretching vibration of the CN bond which is a bridge between the methyl and nitro group can not respond immediately to the selective excitations, it always accumulates the vibrational energy slowly and steadily. Then, the underlying mechanisms are discussed based on the response of vibrational modes in both the time and frequency domain. As a result, we found that anharmonic transfers following symmetry rules which involve the couplings assisted by the overtones and rotations, as well as the transfers among the adjacent modes, play important roles in the VER of solid NM.

8.
J Phys Chem A ; 124(40): 8184-8191, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-32864979

ABSTRACT

Ab initio molecular dynamics simulations are presented to investigate the intramolecular vibrational energy redistribution (IVR) of an isolated nitromethane molecule. A number of IVR processes are simulated by monitoring the kinetic energy of vibrational modes under selective low-lying vibrational excitations from their ground states (Δν = 1 or 2). Evolution of the normal-mode kinetic energy gives the ultrafast energy transfer processes from parent modes to daughter modes intuitively. From the ultrafast vibrational transfer made by Fourier transformation of the time-dependent normal-mode kinetic energy, we can capture that the symmetry of the normal modes plays an important role in the anharmonic coupling between the vibrational modes. The results show three symmetry-dependent coupling mechanisms: direct symmetric coupling, overtone-assisted coupling, and rotation-assisted coupling. Furthermore, the calculated efficiencies of IVR also coincide with these mechanisms.

9.
Phys Chem Chem Phys ; 21(37): 20822-20828, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31515548

ABSTRACT

Vibrational energy redistribution (VER) of energetic materials plays an important role in transferring the injected energy to the hot spots, but it is extremely challenging to understand the mechanism of VER from experimental or theoretical studies. Here, we combined nonequilibrium molecular dynamics with density functional theory to study the processes of VER for solid nitromethane after the selective excitation of the C-H stretching vibration. The VER processes are traced by monitoring the normal-mode kinetic energies of both excited and unexcited vibrations. To explore the underlying VER mechanism, we also analyzed the spectral energy density for the normal mode, obtained from the squared modulus of the short-time Fourier transition of their normal mode momentum. The results showed that the simulated VER progress was reproduced well compared with the previous 3D IR-Raman experiments of liquid nitromethane. Interestingly, the symmetric dependence of the coupling mechanism between the normal modes has been found.

10.
Nanoscale Res Lett ; 12(1): 626, 2017 Dec 16.
Article in English | MEDLINE | ID: mdl-29247304

ABSTRACT

Semiconductor quantum dots (QDs) are widely used in light-emitting diodes and solar cells. Electrochemical modulation is a good way to understand the electrical and optical properties of QDs. In this work, the effects of electrochemical control on photoluminescence (PL) spectra in core/shell CdSe/ZnS QD films are studied. The results show different spectral responses for surface emission and core emission when a negative electrochemical potential is applied: the core emission is redshifted while the surface emission is blueshifted. The former is attributed to the electrostatic expansion of the excitonic wave function, due to the asymmetric distribution of adsorbed cations on the surface of the dots. The latter is attributed to the occupation of lower surface states by the injected electrons, i.e., the photoexcited electrons are more likely to be trapped onto higher surface states, leading to a blueshift of the surface emission. Both the spectral shift and the accompanying PL-quenching processes are reversible by resetting the potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...