Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Biol Drug Des ; 103(5): e14509, 2024 May.
Article in English | MEDLINE | ID: mdl-38684369

ABSTRACT

The biphenyl scaffold represents a prominent privileged structure within the realms of organic chemistry and drug development. Biphenyl derivatives have demonstrated notable biological activities, including antimicrobial, anti-inflammatory, anti-HIV, and the treatment of neuropathic pain. Importantly, their anticancer abilities should not be underestimated. In this context, the present study involves the design and synthesis of a series of biphenyl derivatives featuring an additional privileged structure, namely the quinoline core. We have also diversified the substituents attached to the benzyloxy group at either the meta or para position of the biphenyl ring categorized into two distinct groups: [4,3']biphenylaminoquinoline-substituted and [3,3']biphenylaminoquinoline-substituted compounds. We embarked on an assessment of the cytotoxic activities of these derivatives in colorectal cancer cell line SW480 and prostate cancer cell line DU145 for exploring the structure-activity relationship. Furthermore, we determined the IC50 values of selected compounds that exhibited superior inhibitory effects on cell viability against SW480, DU145 cells, as well as MDA-MB-231 and MiaPaCa-2 cells. Notably, [3,3']biphenylaminoquinoline derivative 7j displayed the most potent cytotoxicity against these four cancer cell lines, SW480, DU145, MDA-MB-231, and MiaPaCa-2, with IC50 values of 1.05 µM, 0.98 µM, 0.38 µM, and 0.17 µM, respectively. This highly promising outcome underscores the potential of [3,3']biphenylaminoquinoline 7j for further investigation as a prospective anticancer agent in future research endeavors.


Subject(s)
Antineoplastic Agents , Biphenyl Compounds , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Line, Tumor , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Drug Screening Assays, Antitumor , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Aminoquinolines/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects
2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279345

ABSTRACT

The skin of Arachis hypogaea L. (peanut or groundnut) is a rich source of polyphenols, which have been shown to exhibit a wider spectrum of noteworthy biological activities, including anticancer effects. However, the anticancer activity of peanut skin extracts against melanoma and colorectal cancer (CRC) cells remains elusive. In this study, we systematically investigated the cytotoxic, antiproliferative, pro-apoptotic, and anti-migration effects of peanut skin ethanolic extract and its fractions on melanoma and CRC cells. Cell viability results showed that the ethyl acetate fraction (AHE) of peanut skin ethanolic crude extract and one of the methanolic fractions (AHE-2) from ethyl acetate extraction exhibited the highest cytotoxicity against melanoma and CRC cells but not in nonmalignant human skin fibroblasts. AHE and AHE-2 effectively modulated the cell cycle-related proteins, including the suppression of cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 6 (CDK6), phosphorylation of Retinoblastoma (p-Rb), E2F1, Cyclin A, and activation of tumor suppressor p53, which was associated with cell cycle arrest and paralleled their antiproliferative efficacies. AHE and AHE-2 could also induce caspase-dependent apoptosis and inhibit migration activities in melanoma and CRC cells. Moreover, it is noteworthy that autophagy, manifested by microtubule-associated protein light chain 3B (LC3B) conversion and the aggregation of GFP-LC3, was detected after AHE and AHE-2 treatment and provided protective responses in cancer cells. Significantly, inhibition of autophagy enhanced AHE- and AHE-2-induced cytotoxicity and apoptosis. Together, these findings not only elucidate the anticancer potential of peanut skin extracts against melanoma and CRC cells but also provide a new insight into autophagy implicated in peanut skin extracts-induced cancer cell death.


Subject(s)
Acetates , Arachis , Melanoma , Humans , Cell Line, Tumor , Plant Extracts/pharmacology , Apoptosis , Autophagy
3.
Future Med Chem ; 15(17): 1569-1582, 2023 09.
Article in English | MEDLINE | ID: mdl-37728024

ABSTRACT

Background: The aminoquinoline core exhibits versatile pharmacological properties, particularly in the area of anticancer activity. This study was designed to investigate the potential of the 4-aminoquinoline scaffold in the development of anticancer agents by targeting the HIF-1α signaling pathway. Methodology: The authors synthesized multiple derivatives of 4-aminoquinoline containing heterocyclic rings by a microwave reactor and assessed the cytotoxicity and inhibitory effects of these derivatives on the HIF-1α signaling pathway. Conclusion: Compound 3s was identified as the most promising HIF-1α inhibitor due to its exceptional antiproliferative effects, with IC50 values of 0.6 and 53.3 nM observed in MiaPaCa-2 and MDA-MB-231 cells, respectively. Furthermore, compound 3s was found to inhibit HIF-1α expression by decreasing the level of HIF-1α mRNA.


Subject(s)
Antineoplastic Agents , Signal Transduction , Antineoplastic Agents/pharmacology , Aminoquinolines/pharmacology , RNA, Messenger , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor
4.
Cancers (Basel) ; 14(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36230821

ABSTRACT

Triple negative breast cancer (TNBC) is considered the most aggressive breast cancer with high relapse rates and poor prognosis. Although great advances in the development of cancer therapy have been witnessed over the past decade, the treatment options for TNBC remain limited. In this study, we investigated the effect and potential underlying mechanism of the Hsp70 inhibitors, compound 1 and compound 6, on breast cancer stem cells (BCSCs) in TNBC cells. Our results showed that compound 1 and 6 exhibited potent tumor suppressive effects on cell viability and proliferation, and effectively inhibited BCSC expansion in TNBC cells. Reminiscent with the effect of Hsp70 inhibitors, Hsp70 knockdown effectively suppressed mammosphere formation and the expressions of BCSCs surface markers. Mechanistically, evidence showed that the Hsp70 inhibitors inhibited BCSCs by down-regulating ß-catenin in TNBC cells. Moreover, we used the Hsp70 inhibitors treated TNBC cells and a stable Hsp70 knockdown clone of MDA-MB-231 cells to demonstrate the in vivo efficacy of Hsp70 inhibition in suppressing tumorigenesis and xenograft tumor growth. Together, these findings suggest the potential role of Hsp70 as a target for TNBC therapy and foster new therapeutic strategies to eliminate BCSCs by targeting Hsp70.

5.
Bioorg Chem ; 121: 105681, 2022 04.
Article in English | MEDLINE | ID: mdl-35176558

ABSTRACT

Hypoxia-inducible factor (HIF)-1α is a key transcription factor that contributes to aggressive and drug-resistant phenotypes in tumor cells under hypoxic conditions. Therefore, targeting HIF-1α represents a promising therapeutic strategy for cancer drug development. In the present study, we designed, synthesized, and evaluated a new series of biarylquinoline derivatives as potential HIF-1α inhibitors based on structure-activity relationship. Among these derivatives, compound 7f represents the optimal agent with IC50 values of 28 nM and 15 nM in suppressing the viability of MiaPaCa-2 and MDA-MB-231 cells, respectively. Compound 7f also exhibited potent efficacy in inhibiting hypoxia-induced migration of MDA-MB-231 and MiaPaCa-2 cells. Mechanistically, compound 7f suppressed HIF-1α expression by blocking transcription and protein translation, in lieu of facilitating protein degradation. Moreover, this HIF-1α downregulation was associated with compound 7f's ability to concomitantly inhibit multiple signaling pathways governing HIF-1 α expression at different levels, including those mediated by STAT3, MEK/ERK MAPK, and mTOR/4E-BP1. Together, these findings underscore the translational potential of these biarylquinoline derivatives to be developed as novel HIF-1α inhibitors, which warrants further investigations.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Humans , Hypoxia/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms/drug therapy , Signal Transduction
6.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163281

ABSTRACT

Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.


Subject(s)
Isoflavones/pharmacology , Melanins/metabolism , Animals , Astragalus propinquus/metabolism , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Isoflavones/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Melanoma/drug therapy , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Phosphorylation/drug effects , Plant Extracts/pharmacology , Plant Roots , Signal Transduction/drug effects , Zebrafish/metabolism , alpha-MSH/pharmacology , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
7.
J Agric Food Chem ; 69(48): 14557-14567, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34813306

ABSTRACT

Triple negative breast cancer (TNBC) is one of the leading causes of cancer death in the world and lacks an effective targeted therapy. G-protein-coupled receptor 161 (GPR161) has been demonstrated to perform the functional regulations on TNBC progression and might be a potential new target for TNBC therapy. This study showed the effects of bisdemethoxycurcumin (BDMC) on GPR161 regulation, indicating that BDMC effectively inhibited GPR161 expression and downregulated GPR161-driven signaling. BDMC showed the potent inhibitory effects on TNBC proliferation through suppressing GPR161-mediated mammalian target of rapamycin (mTOR)/70 kDa ribosomal protein S6 kinase (p70S6K) activation. Besides, in this study, we discover the mechanism of GPR161-driven TNBC metastasis, linking to GPR161-mediated twist-related protein 1 (Twist1)/matrix metallopeptidase 9 (MMP9) contributing to the epithelial-mesenchymal transition (EMT). BDMC effectively repressed GPR161-mediated TNBC metastasis via inhibiting Twist1/MMP9-induced EMT. The three-dimensional invasion assay also showed that BDMC significantly inhibited TNBC invasion. The combination treatment of BDMC and rapamycin enhanced the inhibition of TNBC proliferation and metastasis through increasing the blockage of mTOR activation. Furthermore, this study also observed that BDMC activated the caspase 3/9 signaling pathway to induce TNBC apoptosis. Therefore, BDMC could be applicable to anticancer therapy, especially targeting on the GPR161-driven cancer type.


Subject(s)
Triple Negative Breast Neoplasms , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Diarylheptanoids , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Sirolimus , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL