Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Heliyon ; 10(11): e32764, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912508

ABSTRACT

Enhancing selenium content in millet is a crucial strategy to address malnutrition due to selenium deficiency. Jingu 21 was used as the experimental material in this study. The effects of selenium fertilizer application amount, vertical position of fertilization, and horizontal position of fertilization on the selenium content in various millet organs were assessed using a three-factor, five-level quadratic rotation combination design. The results indicate that selenium fertilizer application amount, vertical fertilization position, and horizontal fertilization position significantly affected the selenium content in various millet organs. Analysis of the selenium accumulation for different millet organs show that the recommended optimal agronomic strategy for producing selenium-enriched millet comprises a selenium fertilizer application amount ranging from 100.65 to 120.15 kg/hm2, a vertical fertilization position of 10.28-11.76 cm, and a horizontal fertilization position of 6.74-7.29 cm. This study elucidates the patterns of selenium content accumulation under precise fertilization measures of millet and provides valuable insights for implementing selenium enhancement techniques in the production of selenium-enriched millet.

2.
Cell Death Discov ; 10(1): 203, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688909

ABSTRACT

We previously reported lncRNA HAR1A as a tumor suppressor in non-small cell lung cancer (NSCLC). However, the delicate working mechanisms of this lncRNA remain obscure. Herein, we demonstrated that the ectopic expression of HAR1A inhibited the proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion of NSCLC cells and enhanced paclitaxel (PTX) sensitivity in vitro and in vivo. We identified the oncogenic protein annexin 2 (ANXA2) as a potential interacting patterner of HAR1A. HAR1A overexpression enhanced ANXA2 ubiquitination and accelerated its degradation via the ubiquitin-proteasome pathway. We further uncovered that HAR1A promoted the interaction between E3 ubiquitin ligase TRIM65 and ANXA2. Moreover, the ANXA2 plasmid transfection could reverse HAR1A overexpression-induced decreases in proliferation, migration, and invasion of NSCLC cells and the activity of the NF-κB signaling pathway. Finally, we found that HAR1A loss in NSCLC might be attributed to the upregulated METTL3. The m6A modification levels of HAR1A were increased in cancer cells, while YTHDF2 was responsible for recognizing m6A modification in the HAR1A, leading to the disintegration of this lncRNA. In conclusion, we found that METTL3-mediated m6A modification decreased HAR1A in NSCLC. HAR1A deficiency, in turn, stimulated tumor growth and metastasis by activating the ANXA2/p65 axis.

3.
Talanta ; 275: 126142, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38669961

ABSTRACT

A multi-channel prismatic localized surface plasmon resonance (LSPR) biosensor was developed for quantitative and real-time detection of multiple COVID-19 characteristic miRNAs. The well-dispersed and dense gold nanoparticles (AuNPs) arrays for LSPR biosensing were fabricated through a nano-thickness diblock copolymer template (BCPT). Both theoretical and experimental analyses were conducted to investigate the effects of particle size, interparticle spacing, and surface coverage on LSPR sensing spectrum and intensity sensitivity of varied AuNPs sizes. A competitive assay strategy was proposed and used for non-amplification miRNA detection with a low limit detection of 3.41 nM, while a four-channel prismatic LSPR system enables parallel detection of multiple miRNAs. Furthermore, this sensing strategy can effectively and specifically identify target miRNA, distinguish mismatched miRNA and interfering miRNA, and exhibit low non-specific adsorption. This BCPT-based LSPR biosensor demonstrates the practicality and potential of a multi-channel, adaptable, and integrated prismatic sensor in medical testing and diagnostic applications.


Subject(s)
COVID-19 , Gold , Metal Nanoparticles , MicroRNAs , SARS-CoV-2 , Surface Plasmon Resonance , MicroRNAs/analysis , Surface Plasmon Resonance/methods , Gold/chemistry , COVID-19/diagnosis , COVID-19/virology , Humans , Metal Nanoparticles/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Limit of Detection , Biosensing Techniques/methods
4.
Br J Cancer ; 130(7): 1109-1118, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341511

ABSTRACT

BACKGROUND: 13-15% of breast cancer/BC patients diagnosed as pathological complete response/pCR after neoadjuvant systemic therapy/NST suffer from recurrence. This study aims to estimate the rationality of organoid forming potential/OFP for more accurate evaluation of NST efficacy. METHODS: OFPs of post-NST residual disease/RD were checked and compared with clinical approaches to estimate the recurrence risk. The phenotypes of organoids were classified via HE staining and ER, PR, HER2, Ki67 and CD133 immuno-labeling. The active growing organoids were subjected to drug sensitivity tests. RESULTS: Of 62 post-NST BC specimens, 24 were classified as OFP-I with long-term active organoid growth, 19 as OFP-II with stable organoid growth within 3 weeks, and 19 as OFP-III without organoid formation. Residual tumors were overall correlated with OFP grades (P < 0.001), while 3 of the 18 patients (16.67%) pathologically diagnosed as tumor-free (ypT0N0M0) showed tumor derived-organoid formation. The disease-free survival/DFS of OFP-I cases was worse than other two groups (Log-rank P < 0.05). Organoids of OFP-I/-II groups well maintained the biological features of their parental tumors and were resistant to the drugs used in NST. CONCLUSIONS: The OFP would be a complementary parameter to improve the evaluation accuracy of NST efficacy of breast cancers.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Neoadjuvant Therapy , Disease-Free Survival , Receptor, ErbB-2 , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
5.
J Nanobiotechnology ; 22(1): 75, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408974

ABSTRACT

The capacity to identify small amounts of pathogens in real samples is extremely useful. Herein, we proposed a sensitive platform for detecting pathogens using cyclic DNA nanostructure@AuNP tags (CDNA) and a cascade primer exchange reaction (cPER). This platform employs wheat germ agglutinin-modified Fe3O4@Au magnetic nanoparticles (WMRs) to bind the E. coli O157:H7, and then triggers the cPER to generate branched DNA products for CDNA tag hybridization with high stability and amplified SERS signals. It can identify target pathogens as low as 1.91 CFU/mL and discriminate E. coli O157:H7 in complex samples such as water, milk, and serum, demonstrating comparable or greater sensitivity and accuracy than traditional qPCR. Moreover, the developed platform can detect low levels of E. coli O157:H7 in mouse serum, allowing the discrimination of mice with early-stage infection. Thus, this platform holds promise for food analysis and early infection diagnosis.


Subject(s)
Escherichia coli O157 , Nanoparticles , Animals , Mice , DNA, Complementary , DNA , Escherichia coli O157/genetics , Food Microbiology
6.
Talanta ; 269: 125440, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38000241

ABSTRACT

Prism-based surface Plasmon resonance (SPR) system, as one of the leading candidate concepts for scale application and commercial solution, has good stability, high-sensitivity and greater theoretical/technical maturity. Therefore, to take advantage of prism-based SPR system fully, and break up limitations of complicated and bulky traditional prism-based SPR system, optimal and compact design of optical system is an effective solution. Herein, a customizable miniaturized prism-based SPR system is developed by optical system optimization and integrated design, combining portable data acquisition and processing technology (FPGA-based multifunctional data processing). This proposed prism-based SPR system can achieve a miniaturized SPR system, thus, it also can meet the requirements of flexibility configuration and customizable performance to accommodate the various needs of different users and application scenes. Additionally, the customizable features can make it to achieve the best performance optimization and differentiation.

7.
EBioMedicine ; 99: 104920, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101299

ABSTRACT

BACKGROUND: Oesophageal squamous cell carcinoma (ESCC) is a lethal malignancy. Immune checkpoint inhibitors (ICIs) showed great clinical benefits for patients with ESCC. We aimed to construct a model predicting prognosis and response to ICIs by integrating diverse programmed cell death (PCD) forms. METHODS: Genes related to 14 PCDs were collected to generate multi-gene signatures, including apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Bulk and single-cell RNA transcriptome datasets were used to develop and validate the model. We assessed the functions of two necroptosis-related genes in ESCC cells by Western blot, co-immunoprecipitation (Co-IP), LDH release assay, CCK-8, and migration assay, followed by immunohistochemistry (IHC) staining on samples of patients with ESCC (n = 67). FINDINGS: We built and validated a 16-gene prognostic combined cell death index (CCDI) by combining immunogenic cell death (ICD) and necroptosis signatures. The CCDI could also predict response to ICIs in cancer, as shown by Tumour Immune Dysfunction and Exclusion (TIDE) analysis, confirmed in four independent ICI clinical trials. Trajectory analysis revealed that HOOK1 and CUL4A might affect ESCC cell fate. We found that HOOK1 induced necroptosis and inhibited the proliferation and migration of ESCC cells, while CUL4A exhibited the opposite effects. Co-IP assay confirmed that HOOK1 and CUL4A promoted and reduced necrosome formation in ESCC cells. Data from patients with ESCC further supported that HOOK1 and CUL4A might be a tumour suppressor and oncogene, respectively. INTERPRETATION: We constructed a CCDI model with potential in predicting prognosis and response to ICIs in cancer. HOOK1 and CUL4A in the CCDI model are crucial prognostic biomarkers in ESCC. FUNDING: The Natural Science Foundation of China [82172786], The National Cancer Center Climbing Fund of China [NCC201908B06], The Natural Science Foundation of Heilongjiang Province [LH2021H077].


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/pathology , Prognosis , Esophageal Neoplasms/metabolism , Necroptosis/genetics , Apoptosis/genetics , Cullin Proteins
8.
Funct Integr Genomics ; 23(4): 320, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37843675

ABSTRACT

Among abiotic stresses, plants are the most vulnerable to salt and drought stresses. These stresses affect plant growth and development. Glycosyltransferases are involved in the responses of plants to abiotic stresses. In this study, a UDP-glycosyltransferase gene (SlUGT73C1) from Solanum lycopersicum was isolated and identified, which exhibited induction under salt or drought stress. The full length of SlUGT73C1 was 1485 bp, encoding 494 amino acids. Stress-related cis-acting elements were present in the promoter sequence of SlUGT73C1, such as ARE, LTR, and GC motifs. Compared with the wild-type plants, Arabidopsis thaliana overexpressing SlUGT73C1 exhibited increased seed germination rate and SOD and POD activities, decreased MDA content, and increased expression levels of osmotic stress regulators genes, rate-limiting enzymes genes in the proline synthesis pathway, Na+/K+ reverse transporter genes, and rate-limiting genes in the ABA biosynthesis pathway under salt or drought stress. These results indicated that SlUGT73C1 plays an important role in regulating salt and drought tolerance in plants.


Subject(s)
Arabidopsis , Solanum lycopersicum , Arabidopsis/genetics , Arabidopsis/metabolism , Solanum lycopersicum/genetics , Drought Resistance , Abscisic Acid/metabolism , Plants, Genetically Modified/genetics , Sodium Chloride/pharmacology , Droughts , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Uridine Diphosphate , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Biosensors (Basel) ; 13(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37367014

ABSTRACT

Plasmonic metal nanostructures have promising applications in biosensing due to their ability to facilitate light-matter interaction. However, the damping of noble metal leads to a wide full width at half maximum (FWHM) spectrum which restricts sensing capabilities. Herein, we present a novel non-full-metal nanostructure sensor, namely indium tin oxide (ITO)-Au nanodisk arrays consisting of periodic arrays of ITO nanodisk arrays and a continuous gold substrate. A narrow-band spectral feature under normal incidence emerges in the visible region, corresponding to the mode-coupling of surface plasmon modes, which are excited by lattice resonance at metal interfaces with magnetic resonance mode. The FWHM of our proposed nanostructure is barely 14 nm, which is one fifth of that of full-metal nanodisk arrays, and effectively improves the sensing performance. Furthermore, the thickness variation of nanodisks hardly affects the sensing performance of this ITO-based nanostructure, ensuring excellent tolerance during preparation. We fabricate the sensor ship using template transfer and vacuum deposition techniques to achieve large-area and low-cost nanostructure preparation. The sensing performance is used to detect immunoglobulin G (IgG) protein molecules, promoting the widespread application of plasmonic nanostructures in label-free biomedical studies and point-of-care diagnostics. The introduction of dielectric materials effectively reduces FWHM, but sacrifices sensitivity. Therefore, utilizing structural configurations or introducing other materials to generate mode-coupling and hybridization is an effective way to provide local field enhancement and effective regulation.


Subject(s)
Biosensing Techniques , Nanostructures , Surface Plasmon Resonance/methods , Nanostructures/chemistry , Gold/chemistry , Tin Compounds , Biosensing Techniques/methods
10.
Am J Respir Crit Care Med ; 208(1): 68-78, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37154609

ABSTRACT

Rationale: A 24-week, phase 3, open-label study showed elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was safe and efficacious in children aged 6-11 years with cystic fibrosis (CF) and one or more F508del-CFTR alleles. Objectives: To assess long-term safety and efficacy of ELX/TEZ/IVA in children who completed the pivotal 24-week phase 3 trial. Methods: In this phase 3, two-part (part A and part B), open-label extension study, children aged ⩾6 years with CF heterozygous for F508del and a minimal function CFTR mutation (F/MF genotypes) or homozygous for F508del (F/F genotype) who completed the 24-week parent study received ELX/TEZ/IVA based on weight. Children weighing <30 kg received ELX 100 mg once daily/TEZ 50 mg once daily/IVA 75 mg every 12 hours, whereas children weighing ⩾30 kg received ELX 200 mg once daily/TEZ 100 mg once daily/IVA 150 mg every 12 hours (adult dose). The 96-week analysis of part A of this extension study is reported here. Measurements and Main Results: Sixty-four children (F/MF genotypes, n = 36; F/F genotype, n = 28) were enrolled and received one or more doses of ELX/TEZ/IVA. Mean (SD) period of exposure to ELX/TEZ/IVA was 93.9 (11.1) weeks. The primary endpoint was safety and tolerability. Adverse events and serious adverse events were consistent with common manifestations of CF disease. Overall, exposure-adjusted rates of adverse events and serious adverse events (407.74 and 4.72 events per 100 patient-years) were lower than in the parent study (987.04 and 8.68 events per 100 patient-years). One child (1.6%) had an adverse event of aggression that was moderate in severity and resolved after study drug discontinuation. From parent study baseline at Week 96 of this extension study, the mean percent predicted FEV1 increased (11.2 [95% confidence interval (CI), 8.3 to 14.2] percentage points), sweat chloride concentration decreased (-62.3 [95% CI, -65.9 to -58.8] mmol/L), Cystic Fibrosis Questionnaire-Revised respiratory domain score increased (13.3 [95% CI, 11.4 to 15.1] points), and lung clearance index 2.5 decreased (-2.00 [95% CI, -2.45 to -1.55] units). Increases in growth parameters were also observed. The estimated pulmonary exacerbation rate per 48 weeks was 0.04. The annualized rate of change in percent predicted FEV1 was 0.51 (95% CI, -0.73 to 1.75) percentage points per year. Conclusions: ELX/TEZ/IVA continued to be generally safe and well tolerated in children aged ⩾6 years through an additional 96 weeks of treatment. Improvements in lung function, respiratory symptoms, and CFTR function observed in the parent study were maintained. These results demonstrate the favorable long-term safety profile and durable clinical benefits of ELX/TEZ/IVA in this pediatric population. Clinical trial registered with www.clinicaltrials.gov (NCT04183790).


Subject(s)
Cystic Fibrosis , Adult , Child , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/diagnosis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Alleles , Chloride Channel Agonists/therapeutic use , Aminophenols/adverse effects , Benzodioxoles/adverse effects , Mutation
11.
Am J Clin Nutr ; 117(6): 1342-1352, 2023 06.
Article in English | MEDLINE | ID: mdl-37075847

ABSTRACT

BACKGROUND: Prenatal vitamin D deficiency is associated with asthma or recurrent wheezing in offspring. However, evidence from randomized trials on the efficacy of vitamin D supplementation is inconclusive. OBJECTIVES: We aimed to examine the differential efficacy of prenatal vitamin D supplementation based on the maternal baseline vitamin D status and the starting time of supplementation to prevent early life asthma or recurrent wheezing. METHODS: We conducted a secondary analysis of the Vitamin D Antenatal Asthma Reduction Trial (VDAART), a randomized double-blind trial of prenatal vitamin D supplementation initiated at 10-18 weeks (wks) of gestation (4400 IU of intervention/day compared with 400 IU of placebo/day) to prevent offspring asthma or recurrent wheezing by the age of 6 years. We assessed the effect of modification of supplementation by maternal baseline vitamin D status at enrollment and the timing of initiation of supplementation. RESULTS: An inverse relationship was observed between maternal 25-hydroxyvitamin D (25(OH)D) levels at trial entry and 25(OH)D levels during late pregnancy (32-38 wks of gestation) in both supplementation arms (P < 0.001). Overall, supplementation efficacy was not dependent on the maternal baseline 25(OH)D status. However, a trend toward the reduction of asthma or recurrent wheezing was observed across the baseline groups in the intervention arm (P = 0.01), with the greatest reduction observed in the most severely vitamin D-deficient women (25(OH)D < 12 ng/mL; adjusted odds ratio [aOR] = 0.48; confidence interval [CI]: 0.17, 1.34). Gestational age at trial enrollment modified supplementation efficacy, showing a greater reduction of offspring asthma or recurrent wheezing with earlier intervention during pregnancy (aOR = 0.85; CI = 0.76, 0.95), particularly in women who were 9-12 wk pregnant (aOR = 0.45; CI = 0.24, 0.82). CONCLUSIONS: Pregnant women with severe vitamin D deficiency show the greatest 25(OH)D improvement because of supplementation. In these women, a vitamin D dose of 4400 IU might have a preventive role in the development of early life offspring asthma or recurrent wheezing. Gestational age is suggested to modify the efficacy of prenatal vitamin D supplementation, showing the highest beneficial effect if supplementation is started during the first trimester of pregnancy. This study is an ancillary analysis from the VDAART, which is registered in ClinicalTrials.gov as NCT00902621.


Subject(s)
Asthma , Vitamin D Deficiency , Female , Pregnancy , Humans , Child , Respiratory Sounds/etiology , Gestational Age , Dietary Supplements , Vitamin D , Vitamins/pharmacology , Vitamins/therapeutic use , Calcifediol , Asthma/prevention & control , Asthma/etiology , Vitamin D Deficiency/complications , Vitamin D Deficiency/prevention & control
12.
Am J Respir Crit Care Med ; 208(1): 59-67, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36921081

ABSTRACT

Rationale: Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) has been shown to be safe and effective in people with cystic fibrosis (CF) aged ⩾6 years with at least one F508del-CFTR allele but has not been studied in younger children. Objectives: To evaluate the safety, pharmacokinetics, pharmacodynamics, and efficacy of ELX/TEZ/IVA in children with CF aged 2-5 years. Methods: In this phase 3, open-label, two-part study (parts A and B), children weighing <14 kg (on Day 1) received ELX 80 mg once daily (qd), TEZ 40 mg qd, and IVA 60 mg each morning and 59.5 mg each evening; children weighing ⩾14 kg received ELX 100 mg qd, TEZ 50 mg qd, and IVA 75 mg every 12 hours. Measurements and Main Results: The primary endpoints for part A (15-d treatment period) were pharmacokinetics and safety and tolerability. For part B (24-wk treatment period), the primary endpoint was safety and tolerability; secondary endpoints included pharmacokinetics and absolute changes from baseline in sweat chloride concentration and lung clearance index2.5 (LCI2.5, defined as the number of lung turnovers required to reduce the end tidal N2 concentration to 2.5% of its starting value) through Week 24. Analysis of pharmacokinetic data from 18 children enrolled in part A confirmed the appropriateness of the part B dosing regimen. In part B, 75 children (F508del/minimal function genotypes, n = 52; F508del/F508del genotype, n = 23) were enrolled and dosed. Seventy-four children (98.7%) had adverse events, which were all mild (62.7%) or moderate (36.0%) in severity. The most common adverse events were cough, fever, and rhinorrhea. Decreases in sweat chloride concentration (-57.9 mmol/L; 95% confidence interval [CI], -61.3 to -54.6; n = 69) and LCI2.5 (-0.83 U; 95% CI, -1.01 to -0.66; n = 50) were observed from baseline through Week 24. Mean body mass index was within the normal range at baseline and remained stable at Week 24. Conclusions: In this open-label study in children 2-5 years of age, ELX/TEZ/IVA treatment was generally safe and well tolerated, with a safety profile consistent with that observed in older age groups, and led to clinically meaningful reductions in sweat chloride concentration and LCI2.5. Clinical trial registered with www.clinicaltrials.gov (NCT04537793).


Subject(s)
Cystic Fibrosis , Humans , Child , Aged , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/therapeutic use , Chlorides , Alleles , Chloride Channel Agonists/therapeutic use , Aminophenols , Benzodioxoles , Mutation
13.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430869

ABSTRACT

Anaplastic thyroid cancer is an extremely lethal malignancy without reliable treatment. BRAFV600E point mutation is common in ATCs, which leads to MAPK signaling activation and is regarded as a therapeutic target. Resveratrol inhibits ATC cell growth, while its impact on BRAF-MAPK signaling remains unknown. This study aims to address this issue by elucidating the statuses of BRAF-MAPK and STAT3 signaling activities in resveratrol-treated THJ-11T, THJ-16T, and THJ-21T ATC cells and Nthyori 3-1 thyroid epithelial cells. RT-PCR and Sanger sequencing revealed MKRN1-BRAF fusion mutation in THJ-16T, BRAF V600E point mutation in THJ-21T, and wild-type BRAF genes in THJ-11T and Nthyori 3-1 cells. Western blotting and immunocytochemical staining showed elevated pBRAF, pMEK, and pERK levels in THJ-16T and THJ-21T, but not in THJ-11T or Nthyori 3-1 cells. Calcein/PI, EdU, and TUNEL assays showed that compared with docetaxel and doxorubicin and MAPK-targeting dabrafenib and trametinib, resveratrol exerted more powerful inhibitory effects on mutant BRAF-harboring THJ-16T and THJ-21T cells, accompanied by reduced levels of MAPK pathway-associated proteins and pSTAT3. Trametinib- and dabrafenib-enhanced STAT3 activation was efficiently suppressed by resveratrol. In conclusion, resveratrol acts as dual BRAF-MAPK and STAT3 signaling inhibitor and a promising agent against ATCs with BRAF mutation.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Resveratrol/pharmacology , Resveratrol/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Mutation , Signal Transduction , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
14.
Cancer Sci ; 113(10): 3618-3632, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35946078

ABSTRACT

Osteosarcoma (OS) is the most common bone malignancy without a reliable therapeutic target. Glypican-3 (GPC3) mutation and upregulation have been detected in multidrug resistant OS, and anti-GPC3 immunotherapy can effectively suppress the growth of organoids. Further profiling of GPC3 mutations and expression patterns in OS is of clinical significance. To address these issues, fresh OS specimens were collected from 24 patients for cancer-targeted next-generation sequencing (NGS) and three-dimensional patient-derived organoid (PDO) culture. A tumor microarray was prepared using 37 archived OS specimens. Immunohistochemical (IHC) staining was performed on OS specimens and microarrays to profile GPC3 and CD133 expression as well as intratumoral distribution patterns. RT-PCR was conducted to semiquantify GPC3 and CD133 expression levels in the OS tissues. Anti-GPC3 immunotherapy was performed on OS organoids with or without GPC3 expression and its efficacy was analyzed using multiple experimental approaches. No OS cases with GPC3 mutations were found, except for the positive control (OS-08). IHC staining revealed GPC3 expression in 73.77% (45/61) of OSs in weak (+; 29/45), moderate (++; 8/45), and strong (+++; 8/45) immunolabeling densities. The intratumoral distribution of GPC3-positive cells was variable in the focal (+; 10%-30%; 8/45), partial (++; 31%-70%; 22/45), and the most positive patterns (+++; >71%; 15/45), which coincided with CD133 immunolabeling (P = 9.89 × 10-10 ). The anti-GPC3 antibody efficiently inhibits Wnt/ß-catenin signaling and induces apoptosis in GPC3-positive PDOs and PDXs, as opposed to GPC3-negative PDOs and PDXs. The high frequency of GPC3 and CD133 co-expression and the effectiveness of anti-wild-type GPC3-Ab therapy in GPC3-positive OS models suggest that GPC3 is a novel prognostic parameter and a promising therapeutic target for osteosarcoma.


Subject(s)
Bone Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Osteosarcoma , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Glypicans/metabolism , Humans , Liver Neoplasms/pathology , Osteosarcoma/drug therapy , Osteosarcoma/genetics , beta Catenin
15.
Phytother Res ; 36(8): 3313-3324, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35649509

ABSTRACT

The lack of reliable drugs is a therapeutic challenge of advanced breast cancers (ABCs). Resveratrol (Res) exerts inhibitory effects on breast cancer cell lines and animal models, while its efficacy against individual breast cancer cases remains unknown. This study aims to use ABC-derived organoids (ABCOs) as the ex vivo therapeutic platform to clarify the effectiveness of resveratrol against different ABC subtypes. Immunohistochemical staining confirmed that the ABCOs maintained their original tumors' ER, PR, HER2, and Ki67 expression patterns. ABCO proliferation and viability tests showed >50% cell death rates in 79.2% (19/24) of Res-treated, 28.6% (2/7) fulvestrant-treated, 66.7% (4/6) paclitaxel-treated, and 66.7% (6/9) gemcitabine-treated ABCOs. pSTAT3 nuclear translocation was more frequent in Res-sensitive (17/19; 89.47%) than that (1/5; 20%) of Res-insensitive ABCOs, which were suppressed upon Res treatment. Statistical analysis revealed a close correlation of STAT3 activation with the efficacy of Res, but not related to tumor receptor expression patterns (ER, PR, HER2) and pathological classification. We demonstrate for the first time the higher efficacy and broader spectrum of Res against different subtypes of ABCOs in comparison with that of conventional antibreast cancer drugs, providing an alternative approach for better management of ABCs.


Subject(s)
Breast Neoplasms , Organoids , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Organoids/metabolism , Organoids/pathology , Resveratrol/pharmacology , Resveratrol/therapeutic use
16.
J Exp Bot ; 73(18): 6170-6185, 2022 10 18.
Article in English | MEDLINE | ID: mdl-35661206

ABSTRACT

Somatic embryogenesis (SE) is a major regeneration approach for in vitro cultured tissues of plants, including citrus. However, SE capability is difficult to maintain, and recalcitrance to SE has become a major obstacle to plant biotechnology. We previously reported that miR156-SPL modules regulate SE in citrus callus. However, the downstream regulatory pathway of the miR156-SPL module in SE remains unclear. In this study, we found that transcription factors CsAGL15 and CsFUS3 bind to the CsMIR156A promoter and activate its expression. Suppression of csi-miR156a function leads to up-regulation of four target genes, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (CsSPL) genes, and reduction of SE efficiency. In the short tandem target mimic (STTM)-miR156a overexpression callus (MIM156), the number of amyloplasts and starch content were significantly reduced, and genes involved in starch synthesis and transport were down-regulated. csi-miR172d was down-regulated, whereas the target genes, CsTOE1.1 and CsTOE1.2, which inhibit the expression of starch biosynthesis genes, were up-regulated. In our working model, CsAGL15 and CsFUS3 activate csi-miR156a, which represses CsSPLs and further regulates csi-miR172d and CsTOEs, thus altering starch accumulation in callus cells and regulating SE in citrus. This study elucidates the pathway of miR156-SPLs and miR172-TOEs-mediated regulation of SE, and provides new insights into enhancing SE capability in citrus.


Subject(s)
Citrus , MicroRNAs , Gene Expression Regulation, Plant , Citrus/genetics , Citrus/metabolism , Starch/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Embryonic Development
17.
BMJ Open Respir Res ; 8(1)2021 11.
Article in English | MEDLINE | ID: mdl-34740944

ABSTRACT

INTRODUCTION: Obstructive lung diseases (asthma and chronic obstructive pulmonary disease (COPD)) and smoking are associated with greater risk of respiratory infections and hospitalisations, but conflicting data exist regarding their association with severity of COVID-19, and few studies have evaluated whether these associations differ by age. OBJECTIVES: To examine the associations between asthma, COPD and smoking on the severity of COVID-19 among a cohort of hospitalised patients, and to test for effect modification by age. METHODS: We performed a retrospective analysis of electronic health record data of patients admitted to Massachusetts General Hospital, assigning the maximal WHO Clinical Progression Scale score for each patient during the first 28 days following hospital admission. Using ordered logistic regression, we measured the association between maximal severity score and asthma, COPD and smoking and their interaction with age. MEASUREMENTS AND MAIN RESULTS: Among 1391 patients hospitalised with COVID-19, we found an increased risk of severe disease among patients with COPD and prior smoking, independent of age. We also found evidence of effect modification by age with asthma and current smoking; in particular, asthma was associated with decreased COVID-19 severity among older adults, and current smoking was associated with decreased severity among younger patients. CONCLUSIONS: This cohort study identifies age as a modifying factor for the association between asthma and smoking on severity of COVID-19. Our findings highlight the complexities of determining risk factors for COVID-19 severity, and suggest that the effect of risk factors may vary across the age spectrum.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Aged , Cohort Studies , Humans , Pulmonary Disease, Chronic Obstructive/epidemiology , Retrospective Studies , SARS-CoV-2 , Smoking/adverse effects
18.
J Allergy Clin Immunol Pract ; 9(10): 3788-3796.e3, 2021 10.
Article in English | MEDLINE | ID: mdl-34166843

ABSTRACT

BACKGROUND: The role of prenatal vitamin D sufficiency and supplementation in the development of childhood aeroallergen sensitization and allergic rhinitis remains uncertain. OBJECTIVE: To describe the association of prenatal vitamin D sufficiency with childhood allergic outcomes in participants of the Vitamin D Antenatal Asthma Reduction Trial, a randomized controlled trial of prenatal vitamin D supplementation. METHODS: We included 414 mother-offspring pairs with offspring aeroallergen sensitization data available at age 6 years in this analysis. We examined the association between prenatal vitamin D sufficiency status, based on vitamin D levels measured in the first and third trimesters, or vitamin D supplementation treatment assignment with the outcomes of aeroallergen sensitization, parent-reported clinical allergic rhinitis, parent-reported clinical allergic rhinitis with aeroallergen sensitization, food sensitization, any sensitization, eczema, and total IgE at ages 3 and 6 years. RESULTS: Compared with early and late insufficiency, early prenatal vitamin D insufficiency with late sufficiency was associated with reduced development of clinical allergic rhinitis with aeroallergen sensitization at 3 years (adjusted odds ratio [aOR] = 0.34; 95% confidence interval [CI], 0.13-0.82; P = .02) and 6 years (aOR = 0.54; 95% CI, 0.29-0.98; P = .05). At 6 years, clinical allergic rhinitis with sensitization was significantly decreased in offspring whose mothers received high-dose vitamin D (aOR = 0.54; 95% CI, 0.32-0.91; P = .02) compared with offspring whose mothers who received low-dose vitamin D. Associations of prenatal vitamin D with aeroallergen sensitization were strengthened among children who also developed asthma or who had a maternal history of atopy. CONCLUSIONS: Among mothers with first-trimester vitamin D insufficiency, we detected a protective effect of third-trimester prenatal vitamin D sufficiency on the development of clinical allergic rhinitis with aeroallergen sensitization at ages 3 and 6 years.


Subject(s)
Eczema , Rhinitis, Allergic , Allergens , Child , Child, Preschool , Female , Humans , Pregnancy , Rhinitis, Allergic/epidemiology , Vitamin D , Vitamins
19.
Nanomaterials (Basel) ; 11(3)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804516

ABSTRACT

To overcome low surface coverage and aggregation of particles, which usually restricts the sensitivity and resolution of conventional localized surface plasmon resonance (LSPR) fiber-optic sensors, we propose a simple self-assembled templating technique that uses a nanometer thickness block copolymer (BCP) layer of poly(styrene-b-4-vinylpyridine) to form a 33 nm gold nanoparticle (AuNP) monolayer with high uniformity and density for LSPR sensing. The LSPR resonance wavelength for this PS-b-P4VP templated methodology is 592 nm and its refractive index sensitivity is up to 386.36 nm/RIU, both of which are significantly improved compared to those of conventional LSPR techniques. Calibrated by a layer-by-layer polyelectrolyte deposition procedure, the decay length of this LSPR sensor is calculated to be 78 nm, which is lower than other traditional self-assembled LSPR sensors. Furthermore, hybridization between target ssDNA, which is linked with capture ssDNA on the LSPR biosensor and DNA-AuNP conjugates, leads to a low detection limit of 67 pM. These enhanced performances are significant and valuable for high-sensitivity and cost-effective LSPR biosensing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...