Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 14(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36826885

ABSTRACT

Silk fibroin is regarded as a promising biomaterial in various areas, including bone tissue regeneration. Herein, Laponite® (LAP), which can promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) to prepare an RSF/LAP hybrid hydrogel. This thixotropic hydrogel is injectable during the operation process, which is favorable for repairing bone defects. Our previous work demonstrated that the RSF/LAP hydrogel greatly promoted the osteogenic differentiation of osteoblasts in vitro. In the present study, the RSF/LAP hydrogel was found to have excellent biocompatibility and significantly improved new bone formation in a standard rat calvarial defect model in vivo. Additionally, the underlying biological mechanism of the RSF/LAP hydrogel in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was extensively explored. The results indicate that the RSF/LAP hydrogels provide suitable conditions for the adhesion and proliferation of BMSCs, showing good biocompatibility in vitro. With the increase in LAP content, the alkaline phosphatase (ALP) activity and mRNA and protein expression of the osteogenic markers of BMSCs improved significantly. Protein kinase B (AKT) pathway activation was found to be responsible for the inherent osteogenic properties of the RSF/LAP hybrid hydrogel. Therefore, the results shown in this study firmly suggest such an injectable RSF/LAP hydrogel with good biocompatibility (both in vitro and in vivo) would have good application prospects in the field of bone regeneration.

2.
Development ; 149(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36239312

ABSTRACT

There is a growing amount of data uncovering the cellular diversity of the pulmonary circulation and mechanisms governing vascular repair after injury. However, the molecular and cellular mechanisms contributing to the morphogenesis and growth of the pulmonary vasculature during embryonic development are less clear. Importantly, deficits in vascular development lead to significant pediatric lung diseases, indicating a need to uncover fetal programs promoting vascular growth. To address this, we used a transgenic mouse reporter for expression of Cxcl12, an arterial endothelial hallmark gene, and performed single-cell RNA sequencing on isolated Cxcl12-DsRed+ endothelium to assess cellular heterogeneity within pulmonary endothelium. Combining cell annotation with gene ontology and histological analysis allowed us to segregate the developing artery endothelium into functionally and spatially distinct subpopulations. Expression of Cxcl12 is highest in the distal arterial endothelial subpopulation, a compartment enriched in genes for vascular development. Accordingly, disruption of CXCL12 signaling led to, not only abnormal branching, but also distal vascular hypoplasia. These data provide evidence for arterial endothelial functional heterogeneity and reveal conserved signaling mechanisms essential for pulmonary vascular development.


Subject(s)
Endothelium, Vascular , Lung , Mice , Pregnancy , Animals , Female , Endothelium, Vascular/metabolism , Morphogenesis , Mice, Transgenic , Embryonic Development
3.
J Mater Chem B ; 10(34): 6546-6556, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36000545

ABSTRACT

Porous scaffolds hold promise in the treatment of bone defects for bone tissue engineering due to their interconnected porous structure and suitable mechanical properties. Herein, LAPONITE® (LAP), which is able to promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) porous scaffolds. Due to hydrogen bonding and electrostatic interactions between RSF and LAP, RSF/LAP 3D porous scaffolds were successfully prepared. The pore size, porosity, and mechanical properties of the RSF/LAP 3D porous scaffolds were modulated during the preparation process. Evaluation of the proliferation of bone marrow mesenchymal stem cells (BMSCs) on the RSF/LAP 3D porous scaffolds in vitro indicated that the addition of LAP improved the adhesion and proliferation of cells. Additionally, alkaline phosphatase activity and osteospecific gene expression analysis showed that the RSF/LAP 3D porous scaffolds enhanced the osteogenic differentiation of BMSCs compared to the pristine RSF porous scaffolds, especially with a higher LAP content. The subcutaneous implantation of the RSF/LAP 3D porous scaffolds in rats demonstrated good histocompatibility in vivo. Therefore, RSF/LAP 3D porous scaffolds with good biocompatibility and biodegradability have good application prospects in the field of bone tissue engineering.


Subject(s)
Fibroins , Tissue Engineering , Animals , Cell Proliferation , Fibroins/chemistry , Osteogenesis , Porosity , Rats , Tissue Scaffolds/chemistry
4.
J Mater Chem B ; 10(20): 3798-3807, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35416829

ABSTRACT

The co-delivery of multiple drugs using one drug carrier is a viable strategy to optimize drug dosage and reduce the side effects in chemotherapy. Herein, a hydrophilic animal protein (silk fibroin) and a hydrophobic plant protein (zein) were selected for preparing a composite drug carrier. Adapting our previously developed method for the preparation of regenerated silk fibroin (RSF) nanospheres, we prepared RSF/zein nanospheres that displayed an interesting structure including a single central hole. The particle size of the RSF/zein nanospheres was regulated from 150 to 460 nm by varying the preparation conditions, implying that such a drug carrier is suitable for both intravenous administration and lymphatic chemotherapy. Two anti-cancer drugs with different target sites, paclitaxel (PTX) and curcumin (CUR), were selected for the preparation of dual-drug-loaded CUR/PTX@RSF/zein nanospheres. Both drugs achieved a high loading capacity in the RSF/zein nanospheres, i.e., 8.2% for PTX and 12.1% for CUR. Subsequently, the encapsulated PTX and CUR were released from the RSF/zein nanospheres in a sustained manner for at least 7 days. Importantly, these dual-drug-loaded RSF/zein nanospheres exhibited a considerable synergistic therapeutic effect, showing more efficient suppression of in vitro cancer cell growth than free PTX or CUR, a combination of free PTX and CUR, or single-drug-loaded nanospheres. Therefore, the CUR/PTX@RSF/zein nanospheres developed in this study hold great potential for combination chemotherapy in future clinical applications.


Subject(s)
Curcumin , Fibroins , Nanospheres , Neoplasms , Zein , Animals , Curcumin/chemistry , Drug Carriers , Nanospheres/chemistry , Neoplasms/drug therapy , Paclitaxel/chemistry , Plant Proteins , Zein/chemistry
5.
Proc Natl Acad Sci U S A ; 116(10): 4362-4371, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30782824

ABSTRACT

During the stepwise specification and differentiation of tissue-specific multipotent progenitors, lineage-specific transcriptional networks are activated or repressed to orchestrate cell specification. The gas-exchange niche in the lung contains two major epithelial cell types, alveolar type 1 (AT1) and AT2 cells, and the timing of lineage specification of these cells is critical for the correct formation of this niche and postnatal survival. Integrating cell-specific lineage tracing studies, spatially specific mRNA transcript and protein expression, and single-cell RNA-sequencing analysis, we demonstrate that specification of alveolar epithelial cell fate begins concomitantly with the proximal-distal specification of epithelial progenitors and branching morphogenesis earlier than previously appreciated. By using a newly developed dual-lineage tracing system, we show that bipotent alveolar cells that give rise to AT1 and AT2 cells are a minor contributor to the alveolar epithelial population. Furthermore, single-cell assessment of the transcriptome identifies specified AT1 and AT2 progenitors rather than bipotent cells during sacculation. These data reveal a paradigm of organ formation whereby lineage specification occurs during the nascent stages of development coincident with broad tissue-patterning processes, including axial patterning of the endoderm and branching morphogenesis.


Subject(s)
Cell Lineage , Lung/cytology , Pulmonary Alveoli/cytology , Animals , Cell Differentiation , Female , In Situ Hybridization, Fluorescence , Mice , Pregnancy , Transcriptome
6.
Lipids Health Dis ; 16(1): 2, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28057006

ABSTRACT

BACKGROUND: Bisphenol A (BPA), an commonly exposed environmental chemicals in humans, has been shown to have a hypercholesterolemic effect with molecular mechanism not clear. Since intestinal cholesterol absorption plays a major role in maintaining total body cholesterol homeostasis, the present study is to investigate whether BPA affects cholesterol absorption in the intestinal Caco-2 cells. METHODS: The Caco-2 cells were pretreated with BPA at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and sterol regulatory element binding protein-2 (SREBP-2) was analyzed by Western blot and qPCR. RESULTS: We found that confluent Caco-2 cells expressed NPC1L1, and the absorption of cholesterol in the cells was inhibited by ezetimibe, a specific inhibitor of NPC1L1. We then pretreated the cells with 0.1-10 nM BPA for 24 h and found that BPA at 1 and 10 nM doses promoted cholesterol absorption. In addition, we found that the BPA-induced promotion of cholesterol absorption was associated with significant increase in the levels of NPC1L1 protein and NPC1L1 mRNA. Moreover, the stimulatory effects of BPA on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the SREBP-2 pathway. CONCLUSIONS: This study provides the first evidence that BPA promotes cholesterol absorption in the intestinal cells and the stimulatory effect of BPA is mediated, at least in part, by SREBP-2-NPC1L1 signaling pathway.


Subject(s)
Benzhydryl Compounds/toxicity , Cholesterol/metabolism , Environmental Pollutants/toxicity , Membrane Proteins/genetics , Phenols/toxicity , Biological Transport/drug effects , Caco-2 Cells , Gene Expression/drug effects , Humans , Hypercholesterolemia/chemically induced , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Intestinal Absorption , Membrane Proteins/metabolism , Membrane Transport Proteins , Transcriptional Activation , Up-Regulation
7.
J Agric Food Chem ; 65(2): 276-280, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28000447

ABSTRACT

We previously demonstrated that curcumin reduces cholesterol absorption in Caco-2 cells through down-regulating Niemann-Pick C1-like 1 (NPC1L1) expression, but the in vivo effect of curcumin on intestinal cholesterol absorption remains unknown. The present study aimed to investigate the effects and mechanisms of curcumin consumption on cholesterol absorption in hamsters. Male hamsters were fed a high-fat diet supplemented with or without curcumin (0.05% w/w) for 12 weeks. Curcumin supplementation significantly decreased serum total cholesterol (TC) (from 6.86 ± 0.27 to 3.50 ± 0.24 mmol/L), triglyceride (TG) (from 5.07 ± 0.34 to 3.72 ± 0.40 mmol/L), and low-density lipoprotein cholesterol (from 2.58 ± 0.19 to 1.71 ± 0.15 mmol/L) levels as well as liver TC (from 11.6 ± 0.05 to 7.2 ± 0.03 mg/g) and TG (from 30.3 ± 0.22 to 25.2 ± 0.18 mg/g) levels (P < 0.05 for all). In contrast, curcumin treatment markedly enhanced fecal cholesterol output (P < 0.01). Moreover, curcumin supplementation down-regulated the mRNA and protein expressions of sterol regulatory element binding protein-2 (SREBP-2) and NPC1L1 in the small intestine (P < 0.05). Our current results indicate that curcumin inhibits cholesterol absorption in hamsters by suppressing SREBP-2 and subsequently down-regulating NPC1L1 expression, which may be responsible for the hypocholesterolemic effects of curcumin.


Subject(s)
Anticholesteremic Agents/pharmacology , Curcumin/pharmacology , Animals , Body Weight/drug effects , Cholesterol/metabolism , Down-Regulation/drug effects , Eating/drug effects , Feces , Gene Expression Regulation/drug effects , Intestinal Absorption/drug effects , Lipids/blood , Liver/drug effects , Liver/metabolism , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mesocricetus , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...