Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 40(Supplement_1): i471-i480, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940142

ABSTRACT

MOTIVATION: High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive to generate. Simultaneously, chromatin structure analyses struggle with extremely sparse contact matrices. To address this problem, computational methods to enhance low-coverage contact matrices have been developed, but existing methods are largely based on resolution enhancement methods for natural images and hence often employ models that do not distinguish between biologically meaningful contacts, such as loops and other stochastic contacts. RESULTS: We present Capricorn, a machine learning model for Hi-C resolution enhancement that incorporates small-scale chromatin features as additional views of the input Hi-C contact matrix and leverages a diffusion probability model backbone to generate a high-coverage matrix. We show that Capricorn outperforms the state of the art in a cross-cell-line setting, improving on existing methods by 17% in mean squared error and 26% in F1 score for chromatin loop identification from the generated high-coverage data. We also demonstrate that Capricorn performs well in the cross-chromosome setting and cross-chromosome, cross-cell-line setting, improving the downstream loop F1 score by 14% relative to existing methods. We further show that our multiview idea can also be used to improve several existing methods, HiCARN and HiCNN, indicating the wide applicability of this approach. Finally, we use DNA sequence to validate discovered loops and find that the fraction of CTCF-supported loops from Capricorn is similar to those identified from the high-coverage data. Capricorn is a powerful Hi-C resolution enhancement method that enables scientists to find chromatin features that cannot be identified in the low-coverage contact matrix. AVAILABILITY AND IMPLEMENTATION: Implementation of Capricorn and source code for reproducing all figures in this paper are available at https://github.com/CHNFTQ/Capricorn.


Subject(s)
Chromatin , Machine Learning , Chromatin/chemistry , Chromatin/metabolism , Humans , Computational Biology/methods , Algorithms , Software
2.
Sci Rep ; 6: 19291, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26765747

ABSTRACT

A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance.


Subject(s)
Chickens/physiology , Light , Photoperiod , Reproduction , Animals , Body Weight , Chickens/growth & development , Female , Fertility , Sexual Maturation
SELECTION OF CITATIONS
SEARCH DETAIL
...