Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1175946, 2023.
Article in English | MEDLINE | ID: mdl-37484467

ABSTRACT

Grasslands play an important role in conserving natural biodiversity and providing ecosystem functions and services for societies. Soil fertility is an important property in grassland, and the monitoring of soil fertility can provide crucial information to optimize ecosystem productivity and sustainability. Testing various soil physiochemical properties related to fertility usually relies on traditional measures, such as destructive sampling, pre-test treatments, labor-intensive procedures, and costly laboratory measurements, which are often difficult to perform. However, soil enzyme activity reflecting the intensity of soil biochemical reactions is a reliable indicator of soil properties and thus enzyme assays could be an efficient alternative to evaluate soil fertility. Here, we review the latest research on the features and functions of enzymes catalyzing the biochemical processes that convert organic materials to available plant nutrients, increase soil carbon and nutrient cycling, and enhance microbial activities to improve soil fertility. We focus on the complex relationships among soil enzyme activities and functions, microbial biomass, physiochemical properties, and soil/crop management practices. We highlight the biochemistry of enzymes and the rationale for using enzyme activities to indicate soil fertility. Finally, we discuss the limits and disadvantages of the potential new molecular tool and provide suggestions to improve the reliability and feasibility of the proposed alternative.

2.
Sci Rep ; 13(1): 4018, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899074

ABSTRACT

Ridge-furrow with plastic film mulching and various urea types have been applied in rainfed agriculture, but their interactive effects on potato (Solanum tuberosum L.) yield and especially environments remain poorly understood. A three-year experiment was conducted to explore the responses of tuber yield, methane (CH4) and nitrous oxide (N2O) emissions, net global warming potential (NGWP), carbon footprint (CF), and net ecosystem economic budget (NEEB) of rainfed potato to two mulching practices [plastic film mulching (RM) and no plastic film mulching (NM)] and three urea types [conventional urea (U), controlled-release urea (C), and a mixture of equal amounts of conventional urea and controlled-release urea at a ratio of 1:1 (CU)] and their interactions. The results showed that RM significantly decreased cumulative N2O emissions and CH4 uptake by 4.9% and 28.4%, but significantly increased NGWP by 8.9% relative to NM. Compared with U, the C and CU produced much lower cumulative N2O emissions and NGWP and higher CH4 uptake. The interaction of mulching methods and urea type had significant influence on tuber yield and NEEB. Considering both environment and production, RMCU could not only achieve a high tuber yield and NEEB (by up to 26.5% and 42.9%, respectively), but also reduce the CF (by up to 13.7%), and therefore should be considered an effective strategy for dryland potato.


Subject(s)
Soil , Solanum tuberosum , Ecosystem , Carbon Footprint , Urea , Delayed-Action Preparations , Agriculture/methods , Nitrous Oxide/analysis , China , Fertilizers
3.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768464

ABSTRACT

Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little is known about genetic controls regarding DIMBOA content. In this study, the best linear unbiased prediction (BLUP) values of DIMBOA content in two ecological environments across 310 maize inbred lines were calculated; and their phenotypic data and BLUP values were used for marker-trait association analysis. We identified nine SSRs that were significantly associated with DIMBOA content, which explained 4.30-20.04% of the phenotypic variation. Combined with 47 original genetic loci from previous studies, we detected 19 hot loci and approximately 11 hot loci (in Bin 1.04, Bin 2.00-2.01, Bin 2.03-2.04, Bin 4.00-4.03, Bin 5.03, Bin 5.05-5.07, Bin 8.01-8.03, Bin 8.04-8.05, Bin 8.06, Bin 9.01, and Bin 10.04 regions) supported pleiotropy for their association with two or more insect-resistant traits. Within the 19 hot loci, we identified 49 candidate genes, including 12 controlling DIMBOA biosynthesis, 6 involved in sugar metabolism/homeostasis, 2 regulating peroxidases activity, 21 associated with growth and development [(auxin-upregulated RNAs (SAUR) family member and v-myb avian myeloblastosis viral oncogene homolog (MYB)], and 7 involved in several key enzyme activities (lipoxygenase, cysteine protease, restriction endonuclease, and ubiquitin-conjugating enzyme). The synergy and antagonism interactions among these genes formed the complex defense mechanisms induced by multiple insect pests. Moreover, sufficient genetic variation was reported for DIMBOA performance and SSR markers in the 310 tested maize inbred lines, and 3 highly (DIMBOA content was 402.74-528.88 µg g-1 FW) and 15 moderate (DIMBOA content was 312.92-426.56 µg g-1 FW) insect-resistant genotypes were major enriched in the Reid group. These insect-resistant inbred lines can be used as parents in maize breeding programs to develop new varieties.


Subject(s)
Plant Breeding , Zea mays , Animals , Zea mays/genetics , Insecta/genetics , Genetic Variation , Genetic Association Studies
4.
PLoS One ; 15(12): e0243301, 2020.
Article in English | MEDLINE | ID: mdl-33270753

ABSTRACT

The application of organic amendments to saline-alkaline soil has been recommended as an agricultural strategy to improve crop productivity and soil health. However, there has been limited research on how organic soil amendment strategies affect the health of oats and their associated rhizosphere fungal communities in saline-alkaline conditions. Thus, the objectives of this study were to understand the effects of oat cultivars with contrasting saline-alkaline tolerances and different amendments on plant morphologies, root exudates (soluble sugars and organic acids), and rhizosphere fungal communities in a saline-alkaline environment. Experiments were conducted on a saline-alkaline tolerant cultivar, Baiyan2, and a saline-alkaline sensitive cultivar, Caoyou1, under four different organic amendment strategies: 1. control (no amendment application), 2. bio-fertilizer application, 3. rotten straw application, and 4. a co-application of bio-fertilizer and rotten straw. Results showed that plant morphological characters of Baiyan2 were better than Caoyou1, and that soluble sugar and organic acid levels in the rhizosphere of Baiyan2 were significantly lower than Caoyou1. Compared to the control, oat root and plant development was significantly improved by the combined bio-fertilizer and rotten straw amendment. Bio-fertilizer application promoted malic and citric acid levels, contributing to a higher total organic acid level, and significantly increased the abundance of Rhizopus arrhizus and decreased the abundance of the fungal pathogens Alternaria, Cladosporium, Sarocladium and Heydenia of Ascomycota in both oat cultivars. All amendment treatments containing rotten straw, except the combined amendment in Baiyan2, significantly increased the relative abundance of Ascomycota (specifically Gibberella, Talaromyces, Fusarium, and Bipolaris) and decreased the relative abundance of R. arrhizus by reducing soluble sugar and organic acid levels. For the combined amendment in Baiyan2, there were no significant changes in Gibberella and Rhizopus between the control and amendment treatment. Our results suggest that co-application of bio-fertilizer and rotten straw, combined with a tolerant oat cultivar, is an effective method to increase crop productivity and enhance soil health in a saline-alkaline environment.


Subject(s)
Avena , Fungi , Mycobiome , Plant Roots , Rhizosphere , Soil Microbiology , Soil/chemistry , Avena/anatomy & histology , Avena/growth & development , Avena/microbiology , Fertilizers , Fungi/classification , Fungi/growth & development , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/microbiology , Salinity
5.
Sci Rep ; 10(1): 19896, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199781

ABSTRACT

Saline-alkaline conditions can limit crop productivity and the role of soil microbes in nutrient cycling in arid and semi-arid regions throughout the world. A better understanding of how soil amendments and plant varieties affect rhizosphere microbial communities in saline-alkaline environments is important for the development of sustainable and productive agricultural systems under these challenging conditions. The objective of this study was to determine the effect of organic soil amendments on crop yield, soil physicochemical properties and rhizosphere bacterial communities of two oat cultivars in a saline-alkaline soil. The experiment was conducted in a semi-arid region of Northern China and involved growing two oat cultivars with varying levels of saline-alkaline tolerance under four different amendment treatments: (1) control (no amendments), (2) bio-fertilizer, (3) rotten straw, and (4) combination of bio-fertilizer and rotten straw. The combined bio-fertilizer and rotten straw amendment treatment resulted in the highest oat yields, reduced soil pH, and increased soil salt content for both cultivars. Baiyan2 (tolerant cultivar) had a higher bacterial α-diversity, relative abundance of Proteobacteria and Acidobacteria, and lower relative abundance of Firmicutes compared to Caoyou1 (sensitive cultivar). The rotten straw treatment and combined amendment treatment decreased bacterial α-diversity and the abundance of Proteobacteria, and increased the abundance of Firmicutes, which were positively correlated with soil salt, available nitrogen, phosphorous and potassium for both cultivars. Our study suggested using tolerant oat cultivars with the combined application of rotten straw and bio-fertilizer could be an effective strategy in remediating saline-alkaline soils.


Subject(s)
Avena/growth & development , Bacteria/metabolism , Crop Production/methods , Fertilizers/analysis , Plant Roots/growth & development , Rhizosphere , Soil/chemistry , Alkalies/chemistry , Avena/metabolism , Avena/microbiology , China , Plant Roots/metabolism , Plant Roots/microbiology , Salinity , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...