Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 839, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287073

ABSTRACT

Intercropping has the potential to improve plant nutrition as well as crop yield. However, the exact mechanism promoting improved nutrient acquisition and the role the rhizosphere microbiome may play in this process remains poorly understood. Here, we use a peanut/maize intercropping system to investigate the role of root-associated microbiota in iron nutrition in these crops, combining microbiome profiling, strain and substance isolation and functional validation. We find that intercropping increases iron nutrition in peanut but not in maize plants and that the microbiota composition changes and converges between the two plants tested in intercropping experiments. We identify a Pseudomonas secreted siderophore, pyoverdine, that improves iron nutrition in glasshouse and field experiments. Our results suggest that the presence of siderophore-secreting Pseudomonas in peanut and maize intercropped plays an important role in iron nutrition. These findings could be used to envision future intercropping practices aiming to improve plant nutrition.


Subject(s)
Iron , Siderophores , Arachis , Zea mays , Rhizosphere , Agriculture/methods
2.
J Agric Food Chem ; 71(27): 10269-10276, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37386871

ABSTRACT

Tomato (Solanum lycopersicum) plants are susceptible to infection by root-knot nematodes, which cause severe economic losses. Planting resistant tomato plants can reduce nematode damage; however, the effects of resistant tomato root exudates in suppressing Meloidogyne incognita remain insufficiently understood. Here, we determined that the resistant tomato plant Lycopersicon esculentum cv. Xianke-8 (XK8) alleviates nematode damage by downregulating the expression of the essential parasitic nematode gene Mi-flp-18 to reduce the infection and reproduction of M. incognita. Using gas chromatography-mass spectrometry, we identified vanillin as a unique compound (compared to susceptible tomato cultivars) in XK8 root exudates that acts as a lethal trap and inhibitor of egg hatching. Moreover, the soil application of 0.4-4.0 mmol/kg vanillin significantly reduced galls and egg masses. The parasite gene Mi-flp-18 was downregulated upon treatment with vanillin, both in vitro and in pot experiments. Collectively, our results reveal an effective nematicidal compound that can use in feasible and economical strategies to control RKNs.


Subject(s)
Solanum lycopersicum , Tylenchoidea , Animals , Plant Exudates/pharmacology , Plant Exudates/chemistry , Solanum lycopersicum/genetics , Exudates and Transudates , Plant Roots/genetics
3.
Plant Cell Environ ; 46(1): 239-250, 2023 01.
Article in English | MEDLINE | ID: mdl-36207784

ABSTRACT

Iron (Fe) deficiency restricts crop yields in calcareous soil. Thus, a novel Fe chelator, proline-2'-deoxymugineic acid (PDMA), based on the natural phytosiderophore 2'-deoxymugineic acid (DMA), was developed to solve the Fe deficiency problem. However, the effects and mechanisms of PDMA relevant to the Fe nutrition and yield of dicots grown under field conditions require further exploration. In this study, pot and field experiments with calcareous soil were conducted to investigate the effects of PDMA on the Fe nutrition and yield of peanuts. The results demonstrated that PDMA could dissolve insoluble Fe in the rhizosphere and up-regulate the expression of the yellow stripe-like family gene AhYSL1 to improve the Fe nutrition of peanut plants. Moreover, the chlorosis and growth inhibition caused by Fe deficiency were significantly diminished. Notably, under field conditions, the peanut yield and kernel micronutrient contents were promoted by PDMA application. Our results indicate that PDMA promotes the dissolution of insoluble Fe and a rich supply of Fe in the rhizosphere, increasing yields through integrated improvements in soil-plant Fe nutrition at the molecular and ecological levels. In conclusion, the efficacy of PDMA for improving the Fe nutrition and yield of peanut indicates its outstanding potential for agricultural applications.


Subject(s)
Arachis , Soil , Chelating Agents , Proline
4.
J Agric Food Chem ; 68(24): 6502-6510, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32463695

ABSTRACT

Banana plants (Musa spp.) are susceptible to infection by many plant-parasitic nematodes, including Meloidogyne incognita. In this study, a mixed fermentation broth of chicken manure (CM) and cassava ethanol wastewater (CEW) was used to inhibit M. incognita by reducing egg hatching and by having a lethal effect on second-stage juvenile nematodes (J2s). It also alleviated nematode damage and promoted banana plant growth. Using gas chromatography-mass spectrometry (GC-MS), we identified methyl palmitate and methyl stearate as bioactive compounds. These bioactive compounds repelled J2s and inhibited egg hatching; reduced root galls, egg masses, and nematodes in soil; and downregulated the essential parasitic nematode genes Mi-flp-18 and 16D10. A Caenorhabditis elegans offspring assay showed that low concentrations of the fermentation broth, methyl palmitate, and methyl stearate were safe for its life cycle. This study explored the effective and environmentally safe strategies for controlling root-knot nematodes.


Subject(s)
Antinematodal Agents/pharmacology , Musa/parasitology , Palmitates/pharmacology , Plant Diseases/parasitology , Stearates/pharmacology , Tylenchoidea/drug effects , Animals , Antinematodal Agents/chemistry , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/growth & development , Gas Chromatography-Mass Spectrometry , Palmitates/chemistry , Plant Roots/parasitology , Stearates/chemistry , Tylenchoidea/growth & development
5.
Front Plant Sci ; 10: 415, 2019.
Article in English | MEDLINE | ID: mdl-31134101

ABSTRACT

Manganese (Mn) and zinc (Zn) play essential roles in plants. Members of the natural resistance-associated macrophage protein (NRAMP) family transport divalent metal ions. In this research, the function of peanut (Arachis hypogaea L.) AhNRAMP1 in transporting Mn and Zn, as well as its potential for iron(Fe) and Zn biofortification was examined. AhNRAMP1 transcription was strongly induced by Mn- or Zn-deficiency in roots and stems of peanut. Yeast complementation assays suggested that AhNRAMP1 encoded a functional Mn and Zn transporter. Exogenous expression of AhNRAMP1 in tobacco and rice enhanced Mn or Zn concentrations, improving tolerance to Mn or Zn deficiency. With higher Mn concentration, transgenic plants exhibited inhibited growth under Mn excess condition; similar results were obtained under excessive Zn treatment. AhNRAMP1 expression increased biomass in transgenic tobacco and rice, as well as yield in transgenic rice grown on calcareous soil. Compared with non-transformed (NT) plants, Fe and Zn concentrations were elevated whereas concentrations of Mn, copper (Cu), and cadmium (Cd) were not enhanced. These results revealed that AhNRAMP1 contributes to Mn and Zn transport in plants and may be a candidate gene for Fe and Zn biofortification.

SELECTION OF CITATIONS
SEARCH DETAIL
...