Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Med Device ; 17(3): 031003, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37554290

ABSTRACT

The results of in vitro dynamic thrombogenicity testing of biomaterials and medical devices can be significantly impacted by test conditions. To develop and standardize a robust dynamic in vitro thrombogenicity tool, the key test parameters need to be appropriately evaluated and optimized. We used a flow loop test system previously developed in our laboratory to investigate the effects of sample length and the number of samples per test loop on the thrombogenicity results. Porcine blood heparinized to a donor-specific target concentration was recirculated at room temperature through polyvinyl chloride (PVC) tubing loops containing test materials for 1 h at 200 mL/min. Four test materials (polytetrafluoroethylene (PTFE), latex, PVC, and silicone) with various thrombotic potentials in two sample lengths (12 and 18 cm) were examined. For the 12-cm long materials, two different test configurations (one and two samples per loop) were compared. Thrombogenicity was assessed through percent thrombus surface coverage, thrombus weight, and platelet count reduction in the blood. The test system was able to effectively differentiate the thrombogenicity profile of the materials (latex > silicone > PVC ≥ PTFE) at all test configurations. Increasing test sample length by 50% did not significantly impact the test results as both 12 and 18 cm sample lengths were shown to equally differentiate thrombotic potentials between the materials. The addition of a second test sample to each loop did not increase the test sensitivity and may produce confounding results, and thus a single test sample per loop is recommended.

2.
Blood Adv ; 7(11): 2622-2631, 2023 06 13.
Article in English | MEDLINE | ID: mdl-36724509

ABSTRACT

Inhibitors of coagulation factor XIa (FXIa) are currently being investigated as potential anticoagulant therapies. We hypothesize that circulating FXIa could be a potential target for these therapies. Using previous analyses of FXIa impurities in immune globulin products involved in thrombotic adverse events, we estimated that picomolar levels of FXIa can be thrombogenic. In an in vitro clot-growth assay, 0.1-3 pM of FXIa did not, by itself, activate clotting but increased the size of growing clots. Spatio-temporal reconstruction of thrombin activity inside the clot revealed that FXIa's effect was limited to the clot-plasma interface, in which FXIa produced a taller than standard wave of thrombin. Factor-depleted plasma and a panel of selective anti-FXIa antibodies showed that exogenous FXIa effects are (1) blocked by anti-FXIa antibodies, (2) independent of FXI activation inside the clot, and (3) larger than the contribution of in situ FXIa. In a thrombin generation (TG) assay, picomolar FXIa did not initiate TG but rather promoted TG triggered by tissue factor or thrombin, suggesting that the effect of FXIa on the thrombin wave is mediated by the elevation of thrombin-triggered TG. In circulating bovine blood, low doses of human FXIa did not initiate clotting but increased the size of stenosis-triggered thrombi. FXIa injection in mice enhanced TG in plasma for at least 6 hours ex vivo, confirming the persistence of circulating FXIa. Our findings suggest that picomolar levels of circulating FXIa may not be able to initiate thrombosis but can facilitate thrombus growth through the facilitation of TG inside the clot.


Subject(s)
Factor XIa , Thrombosis , Animals , Cattle , Humans , Mice , Thrombin , Blood Coagulation , Thrombosis/etiology , Anticoagulants
3.
ASAIO J ; 69(6): 576-582, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36848878

ABSTRACT

To develop and standardize a reliable in vitro dynamic thrombogenicity test protocol, the key test parameters that could impact thrombus formation need to be investigated and understood. In this study, we evaluated the effect of temperature on the thrombogenic responses (thrombus surface coverage, thrombus weight, and platelet count reduction) of various materials using an in vitro blood flow loop test system. Whole blood from live sheep and cow donors was used to assess four materials with varying thrombogenic potentials: negative-control polytetrafluoroethylene (PTFE), positive-control latex, silicone, and high-density polyethylene (HDPE). Blood, heparinized to a donor-specific concentration, was recirculated through a polyvinyl chloride tubing loop containing the test material at room temperature (22-24°C) for 1 hour, or at 37°C for 1 or 2 hours. The flow loop system could effectively differentiate a thrombogenic material (latex) from the other materials for both test temperatures and blood species ( p < 0.05). However, compared with 37°C, testing at room temperature appeared to have slightly better sensitivity in differentiating silicone (intermediate thrombogenic potential) from the relatively thromboresistant materials (PTFE and HDPE, p < 0.05). These data suggest that testing at room temperature may be a viable option for dynamic thrombogenicity assessment of biomaterials and medical devices.


Subject(s)
Biocompatible Materials , Thrombosis , Female , Cattle , Animals , Sheep , Biocompatible Materials/adverse effects , Temperature , Polyethylene , Latex , Thrombosis/etiology , Silicones , Polytetrafluoroethylene/adverse effects , Materials Testing
4.
Pharm Biol ; 60(1): 1606-1615, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35961296

ABSTRACT

CONTEXT: Danggui Niantong Granules (DGNTG) are a valid and reliable traditional herbal formula, commonly used in clinical practice to treat rheumatoid arthritis (RA). However, the mechanism of its effect on RA remains unclear. OBJECTIVE: An investigation of the therapeutic effects of DGNTG on RA. MATERIALS AND METHODS: Twenty-four male Sprague-Dawley (SD) rats were divided into four groups: control, model, DGNTG (2.16 g/kg, gavage), methotrexate (MTX) (1.35 mg/kg, gavage) for 28 days. The morphology of synovial and ankle tissues was observed by haematoxylin-eosin staining. The responses of mitochondrial apoptosis were assessed by qPCR, Western blotting and immunohistochemical staining. Rat faeces were analysed by 16S rRNA sequencing. RESULTS: Our results showed that DGNTG treatment reduced AI scores (7.83 ± 0.37 vs. 4.67 ± 0.47, p < 0.01) and paw volumes (7.63 ± 0.17 vs. 6.13 ± 0.11, p < 0.01) compared with the model group. DGNTG also increased the expression of Bax (0.34 ± 0.03 vs. 0.73 ± 0.03, p < 0.01), cytochrome c (CYTC) (0.24 ± 0.02 vs. 0.64 ± 0.01, p < 0.01) and cleaved caspase-9 (0.24 ± 0.04 vs. 0.83 ± 0.08, p < 0.01), and decreased bcl-2 (1.70 ± 0.11 vs. 0.60 ± 0.09, p < 0.01) expression. DGNTG treatment regulated the structure of gut microbiota. DISCUSSION AND CONCLUSIONS: DGNTG ameliorated RA by promoting mitochondrial apoptosis, which may be associated with regulating gut microbiota structure. DGNTG can be used as a supplement and alternative drug for the treatment of RA; its ability to prevent RA deserves further study.


Subject(s)
Apoptosis , Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Apoptosis/drug effects , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Male , RNA, Ribosomal, 16S/genetics , Rats , Rats, Sprague-Dawley , Synovial Membrane/metabolism
5.
Artif Organs ; 46(12): 2400-2411, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35866431

ABSTRACT

BACKGROUND: To determine suitable alternatives to human blood for in vitro dynamic thrombogenicity testing of biomaterials, four different animal blood sources (ovine, bovine, and porcine blood from live donors, and abattoir porcine blood) were compared to fresh human blood. METHODS: To account for blood coagulability differences between individual donors and species, each blood pool was heparinized to a donor-specific concentration immediately before testing in a dynamic flow loop system. The target heparin level was established using a static thrombosis pre-test. For dynamic testing, whole blood was recirculated at room temperature for 1 h at 200 ml/min through a flow loop containing a single test material. Four materials with varying thrombotic potentials were investigated: latex (positive control), polytetrafluoroethylene (PTFE) (negative control), silicone (intermediate thrombotic potential), and high-density polyethylene (HDPE) (historically thromboresistant). Thrombus weight and surface area coverage on the test materials were quantified, along with platelet count reduction in the blood. RESULTS: While donor-specific heparin levels varied substantially from 0.6 U/ml to 7.0 U/ml among the different blood sources, each source was able to differentiate between the thrombogenic latex and the thromboresistant PTFE and HDPE materials (p < 0.05). However, only donor ovine and bovine blood were sensitive enough to differentiate an increased response for the intermediate thrombotic silicone material compared to PTFE and HDPE. CONCLUSIONS: These results demonstrated that multiple animal blood sources (particularly donor ovine and bovine blood) may be suitable alternatives to fresh human blood for dynamic thrombogenicity testing when appropriate control materials and donor-specific anticoagulation levels are used.


Subject(s)
Biocompatible Materials , Thrombosis , Animals , Cattle , Humans , Biocompatible Materials/adverse effects , Heparin/blood , Latex/adverse effects , Materials Testing/methods , Polyethylene/adverse effects , Polytetrafluoroethylene/adverse effects , Sheep , Silicones/adverse effects , Thrombosis/etiology
6.
ACS Biomater Sci Eng ; 8(8): 3361-3376, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35819069

ABSTRACT

Rheumatoid arthritis (RA) is an inflammatory type of arthritis that causes joint pain and damage. The inflammatory cell infiltration (e.g., M1 macrophages), the poor O2 supply at the joint, and the excess reactive oxygen species (ROS)-induced oxidative injury are the main causes of RA. We herein report a polydopamine (PDA)-coated CeO2-dopped zeolitic imidazolate framework-8 (ZIF-8) nanocomposite CeO2-ZIF-8@PDA (denoted as CZP) that can synergistically treat RA. Under near-infrared (NIR) light irradiation, PDA efficiently scavenges ROS and results in an increased temperature in the inflamed area because of its good light-to-heat conversion efficiency. The rise of temperature serves to obliterate hyper-proliferative inflammatory cells accumulated in the diseased area while vastly promoting the collapse of the acidic-responsive skeleton of ZIF-8 to release the encapsulated CeO2. The released CeO2 exerts its catalase-like activity to relieve hypoxia by generating oxygen via the decomposition of H2O2 highly expressed in the inflammatory sites. Thus, the constructed CZP composite can treat RA through NIR-photothermal/ROS-scavenging/oxygen-enriched combinative therapy and show good regression of pro-inflammatory cytokines and hypoxia-inducible factor-1α (HIF-1α) in vitro and promising therapeutic effect on RA in rat models. The multimodal nano-platform reported herein is expected to shed light on the design of synergistic therapeutic nanomedicine for effective RA therapy.


Subject(s)
Arthritis, Rheumatoid , Zeolites , Animals , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/therapy , Hydrogen Peroxide/adverse effects , Hydrogen-Ion Concentration , Indoles , Oxygen/adverse effects , Polymers , Rats , Reactive Oxygen Species/adverse effects
7.
Front Cell Dev Biol ; 9: 719898, 2021.
Article in English | MEDLINE | ID: mdl-34869311

ABSTRACT

This study aimed to investigate the potential roles of circRNAs in regulating osteoarthritis (OA)-related ghrelin synthesis, autophagy induction, and the relevant molecular mechanisms. Results showed that Col2a1, Acan, ghrelin, and autophagy-related markers expression were downregulated, while matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) expressions increased in both IL-1ß-induced rat chondrocytes and cartilage tissues of OA rats. A total of 130 circRNAs and 731 mRNAs were differentially expressed in IL-1ß-induced rat chondrocytes. Among them, we found that circPan3 expression was significantly decreased in both cellular and animal OA models. CircPan3 directly targeted miR-667-5p. CircPan3 overexpression promoted Col2a1, Acan, ghrelin, beclin 1, and LC3-II expression but reduced MMP13 and ADAMTS5 expression in rat chondrocytes, whereas overexpression of miR-667-5p exhibited opposite effects on the above markers. Furthermore, we found that miR-667-5p bound directly to the 3'-UTR sequence of ghrelin gene. Moreover, the circPan3-induced alterations in chondrocytes were antagonized by miR-667-5p overexpression. Taken together, our findings demonstrate that circPan3 promotes ghrelin synthesis and chondrocyte autophagy via targeting miR-667-5p, protecting against OA injury. This study provided experimental evidence that circPan3/miR-667-5p/ghrelin axis might serve as targets of drug development for the treatment of OA.

8.
J Biomed Mater Res B Appl Biomater ; 109(12): 2259-2267, 2021 12.
Article in English | MEDLINE | ID: mdl-34106517

ABSTRACT

An appropriate preclinical thrombogenicity evaluation of a blood-contacting device is important to reduce thrombosis and thromboembolism risks to patients. The in vitro platelet and leukocyte count assay, as described in the ASTM F2888 test standard, aims to assess thrombogenic potentials of blood-contacting materials. The goals of this study were to evaluate whether this standardized test method can effectively differentiate materials with different thrombogenic potentials and to investigate the impact of anticoagulation conditions on test sensitivity. Using human blood with various anticoagulation conditions, we performed the platelet and leukocyte count assays on four biomaterials and three positive control materials. We found that the use of sodium citrate anticoagulation as stipulated in the 2013 version of the ASTM F2888 standard cannot differentiate materials with different thrombogenic potentials. The modification to use low-concentration heparin, either with recalcified citrated blood or with direct heparinization, substantially improved the test sensitivity and enabled the assay to distinguish platelet count reduction between the positive controls and commonly used biomaterials. Leukocyte count was shown to be a much less sensitive indicator than platelet count for thrombogenicity evaluations of biomaterials. The findings from this study have been incorporated in the recent 2019 version of the ASTM F2888 standard.


Subject(s)
Biocompatible Materials , Thrombosis , Biocompatible Materials/adverse effects , Blood Coagulation , Blood Platelets , Humans , Leukocyte Count , Materials Testing , Thrombosis/prevention & control
9.
ASAIO J ; 67(2): 214-219, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33512917

ABSTRACT

Device-related thrombosis and thromboembolic complications remain a major clinical concern and often impact patient morbidity and mortality. Thus, improved preclinical thrombogenicity assessment methods that better predict clinical outcomes and enhance patient safety are needed. However, there are several challenges and limitations associated with developing and performing preclinical thrombogenicity assessments on the bench and in animals (e.g., the clinical relevance of most in vitro tests has not been established, animal studies may not accurately predict clinical thrombotic events). To facilitate a discussion on how to overcome some of these challenges and to promote collaboration between the Food and Drug Administration (FDA), industry, and academia for the development of more reliable test methods, a scientific forum was organized by FDA and held in Washington, DC, on June 15, 2018 at the ASAIO 64th Annual Conference. Three subject matter experts from the medical device industry and FDA presented their perspectives at this forum, and several audience experts provided input during the open dialogue session. This article summarizes the key messages from the forum regarding the current status and challenges of preclinical thrombogenicity testing, important areas of needed research, and mechanisms for working with FDA to further improve thrombogenicity evaluations of medical devices.


Subject(s)
Blood Coagulation Tests/methods , Prostheses and Implants/adverse effects , Thromboembolism/diagnosis , Thromboembolism/etiology , Animals , Disease Models, Animal , Humans , In Vitro Techniques
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(8): 1119-1126, 2020 Aug 30.
Article in Chinese | MEDLINE | ID: mdl-32895177

ABSTRACT

OBJECTIVE: To explore the effect of Danggui Niantong decoction (DGNTD) on cell apoptosis and TNF receptor super family 6 (Fas)/caspase-8 pathway in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). METHODS: FLS isolated from the synovial tissue of RA patients were cultured and identified using immunofluorescence staining. The cells were treated with 10% blank serum (blank control group), 10% sera containing low, moderate or high doses of DGNTD, or 20 µmol/mL KR-33493 (a Fas inhibitor) combined with 10% serum containing high-dose DGNTD. MTT assay was used to detect the proliferation of the cells after the treatments. Apoptosis of the cells was detected at 48 h in each group using Hoechst 33342 staining and flow cytometry with annexin V-FITC/PI staining. The mRNA and protein expressions of Fas, FADD, caspase-8 and caspase-3 in the cells at 48 h were detected using qPCR and Western blotting. RESULTS: Immunofluorescence staining identified the cultured cells as FLS. Treatment with DGNTD-containing sera significantly inhibited the proliferation of FLS, and the inhibitory effects were enhanced as the dose and intervention time increased (P < 0.05). Hoechst 33342 staining and flow cytometry showed that the sera containing different doses of DGNTD significantly promoted apoptosis of FLS (P < 0.05). The expression levels of Fas, FADD, caspase-8, and caspase-3 at both mRNA and protein levels were significantly increased in the cells after treatment with different doses of DGNTD-containing sera (P < 0.05). The application of KR-33493 obviously reversed the effects of DGNTD on the FLS (P < 0.05). CONCLUSIONS: DGNTD can induce apoptosis of the FLS by activating Fas/caspase-8 signaling pathway.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Apoptosis , Caspase 8 , Cell Proliferation , Cells, Cultured , Fibroblasts , Synovial Membrane
11.
ASAIO J ; 66(2): 183-189, 2020 02.
Article in English | MEDLINE | ID: mdl-30807378

ABSTRACT

A reliable in vitro dynamic test method to evaluate device thrombogenicity is very important for the improvement of the design and safety of blood-contacting medical devices, while reducing the use of animal studies. In this study, a recirculating flow loop system was developed for thrombogenicity testing, using donor sheep blood anticoagulated with Anticoagulant Citrate Dextrose Solution A (ACDA) and used within 24-36 hr postdraw. Immediately before testing, the blood was recalcified and heparinized to a donor-specific target concentration. The heparinization level was based on a static pretest, in which latex tubes were incubated at room temperature for 30 min in blood with a series of heparin concentrations and evaluated for thrombus deposition. For dynamic testing, blood was recirculated at room temperature through a polyvinyl chloride (PVC) tubing loop containing a test material for 1 hr at 200 ml/min using a roller pump. Nine materials were investigated: a negative control (polytetrafluoroethylene [PTFE]), a positive control (latex), and seven commonly used biomaterials including PVC, two silicones with different formulations (Q-Sil and V-Sil), nylon, polyurethane (PU), high-density polyethylene (HDPE), and polyether block amide (PEBAX). The results showed that latex was significantly more thrombogenic than all the other materials (p < 0.05), PVC and Q-Sil exhibited intermediate thrombogenicity with significantly more thrombus surface coverage and thrombus weight than PTFE (p < 0.05), whereas PTFE and the rest of the biomaterials had little to no thrombus deposition. In summary, the test loop system was able to effectively differentiate materials with different thrombogenic potentials.


Subject(s)
Biocompatible Materials/adverse effects , Equipment Design/methods , In Vitro Techniques/methods , Thrombosis/etiology , Animals , Hemodynamics/physiology , Sheep
12.
J Biomed Mater Res A ; 105(1): 253-264, 2017 01.
Article in English | MEDLINE | ID: mdl-27543370

ABSTRACT

Nanocrystalline diamond (NCD) coatings have been investigated for improved wear resistance and enhanced hemocompatibility of cardiovascular devices. The goal of this study was to evaluate the effects of NCD surface nanotopography on in vitro hemocompatibility. NCD coatings with small (NCD-S) and large (NCD-L) grain sizes were deposited using microwave plasma chemical vapor deposition and characterized using scanning electron microscopy, atomic force microscopy, contact angle testing, and Raman spectroscopy. NCD-S coatings exhibited average grain sizes of 50-80 nm (RMS 5.8 nm), while NCD-L coatings exhibited average grain sizes of 200-280 nm (RMS 23.1 nm). In vitro hemocompatibility testing using human blood included protein adsorption, hemolysis, nonactivated partial thromboplastin time, platelet adhesion, and platelet activation. Both NCD coatings demonstrated low protein adsorption, a nonhemolytic response, and minimal activation of the plasma coagulation cascade. Furthermore, the NCD coatings exhibited low thrombogenicity with minimal platelet adhesion and aggregation, and similar morphological changes to surface-bound platelets (i.e., activation) in comparison to the HDPE negative control material. For all assays, there were no significant differences in the blood-material interactions of NCD-S versus NCD-L. The two tested NCD coatings, regardless of nanotopography, had similar hemocompatibility profiles compared to the negative control material (HDPE) and should be further evaluated for use in blood-contacting medical devices. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 253-264, 2017.


Subject(s)
Blood Coagulation/drug effects , Blood Platelets/metabolism , Coated Materials, Biocompatible , Materials Testing , Nanodiamonds/chemistry , Platelet Adhesiveness/drug effects , Adult , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Female , Humans , Male , Partial Thromboplastin Time
13.
Artif Organs ; 37(10): 894-903, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23738621

ABSTRACT

As platelet activation plays a critical role in physiological hemostasis and pathological thrombosis, it is important in the overall hemocompatibility evaluation of new medical devices and biomaterials to assess their effects on platelet function. However, there are currently no widely accepted in vitro test methods to perform this assessment. In an effort to develop effective platelet tests for potential use in medical device evaluation, this study compared the sensitivity of platelet responses to shear stress stimulation of human and bovine blood using multiple platelet activation markers. Fresh whole blood samples anticoagulated with heparin or anticoagulant citrate dextrose, solution A (ACDA) were exposed to shear stresses up to 40 Pa for 2 min using a cone-and-plate rheometer model. Platelet activation was characterized by platelet counts, platelet surface P-selectin expression, and serotonin release into blood plasma. The results indicated that exposure to shear stresses above 20 Pa caused significant changes in all three of the platelet markers for human blood and that the changes were usually greater with ACDA anticoagulation than with heparin. In contrast, for bovine blood, the markers did not change with shear stress stimulation except for plasma serotonin in heparin anticoagulated blood. The differences observed between human and bovine platelet responses suggest that the value of using bovine blood for in vitro platelet testing to evaluate devices may be limited.


Subject(s)
Blood Platelets/cytology , Platelet Activation , Animals , Cattle , Humans , P-Selectin/analysis , Platelet Count , Serotonin/blood , Stress, Mechanical
14.
Artif Organs ; 35(2): 137-44, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20946295

ABSTRACT

Platelet activation is the initiating step to thromboembolic complications in blood-contacting medical devices. Currently, there are no widely accepted testing protocols or relevant metrics to assess platelet activation during the in vitro evaluation of new medical devices. In this article, two commonly used platelet activation marker antibodies, CD62P (platelet surface P-selectin) and PAC1 (activated GP IIb/IIIa), were evaluated using flow cytometry. Anticoagulant citrate dextrose solution A (ACDA) and heparin anticoagulated human blood from healthy donors were separately exposed to shear stresses of 0, 10, 15, and 20 Pa for 120 s using a cone-plate rheometer model, and immediately mixed with the platelet marker antibodies for analysis. To monitor for changes in platelet reactivity between donors and over time, blood samples were also evaluated after exposure to 0, 2, and 20 µM of adenosine diphosphate (ADP). Following ADP stimulation, the percentage of both CD62P and PAC1 positive platelets increased in a dose dependent fashion, even 8 h after the blood was collected. After shear stress stimulation, both CD62P and PAC1 positive platelets increased significantly at shear stress levels of 15 and 20 Pa when ACDA was used as the anticoagulant. However, for heparinized blood, the PAC1 positive platelets decreased with increasing shear stress, while the CD62P positive platelets increased. Besides the anticoagulant effect, the platelet staining buffer also impacted PAC1 response, but had little effect on CD62P positive platelets. These data suggest that CD62P is a more reliable marker compared with PAC1 for measuring shear-dependent platelet activation and it has the potential for use during in vitro medical device testing.


Subject(s)
Blood Platelets/cytology , P-Selectin/immunology , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex/immunology , Adult , Blood Platelets/immunology , Flow Cytometry , Hemorheology , Humans , Stress, Mechanical , Temperature , Young Adult
15.
J Biomed Mater Res A ; 80(1): 194-205, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17041913

ABSTRACT

In the present study, the effects of initial collagen fiber orientation on the medium-term (up to 50 x 10(6) cycles) fatigue response of heart valve soft tissue biomaterials was investigated. Glutaraldehyde treated bovine pericardium (GLBP), preselected for uniform structure and collagen fiber orientation, was used as the representative heart valve biomaterial. Using specialized instrumentation, GLBP specimens were subjected to cyclic tensile loading to maximum stress levels of 500 +/- 50 kPa at a frequency of 22 Hz. Two sample groups were examined, one with the preferred collagen fiber direction parallel (PD) and perpendicular (XD) to the direction of applied strain. The primary findings indicated that GLBP fatigue response was highly sensitive to the direction of loading with respect to fiber orientation. Specifically, when loading perpendicular to the preferred collagen fiber orientation, fiber reorientation is the dominant mechanism. In contrast, when loaded parallel to the preferred fiber direction a reduction in both collagen fiber crimp and fiber reorientation occurred. Moreover, alterations in the degree and direction of mechanical anisotropy can be inducted by cyclic loading when specimens are loaded perpendicular to the preferred fiber direction. Fourier Transform Infrared Spectroscopy (FT-IR) results indicate that molecular-level damage to collagen occurs in both groups after only 20 x 10(6) cycles. Taken as a whole, the results of this study suggest that initial collagen orientation plays a critical role in bioprosthetic heart valve biomaterial fatigue response.


Subject(s)
Biocompatible Materials , Bioprosthesis , Fibrillar Collagens , Heart Valve Prosthesis , Materials Testing , Pericardium , Animals , Biocompatible Materials/chemistry , Cattle , Fibrillar Collagens/chemistry , Pericardium/chemistry , Spectroscopy, Fourier Transform Infrared , Tensile Strength
16.
Biomaterials ; 27(5): 702-13, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16048731

ABSTRACT

Surgical therapy of cardiovascular disorders frequently requires replacement of diseased tissues with prosthetic devices or grafts. In typical tissue engineering approaches, scaffolds are utilized to serve as templates to support cell growth and remodeling. Decellularized vascular matrices have been previously investigated as scaffolds for tissue engineering. However, cell migration into these scaffolds was inadequate due to the very tight matrix organization specific to the aortic structure. To address this problem, we prepared two types of decellularized scaffolds from porcine vascular tissues. Pure elastin scaffolds and pure collagen scaffolds were prepared by selectively removing the collagen component or elastin, respectively. In the current study, we use a subdermal implantation model to demonstrate that arterial elastin and collagen scaffolds exhibit enhanced potential for repopulation by host cells in vivo. Notably, numerous new collagen fibers and bundles were found within the remodeled elastin scaffolds and new elastin fibers within collagen scaffolds, respectively, clearly indicating their ability to support de novo extracellular matrix synthesis. We also show that biological cues such as growth factors are required for efficient repopulation of elastin and collagen scaffolds. Finally, we bring evidence that these scaffolds can be endothelialized in vitro for thrombosis resistance and thus can serve as promising candidates for cardiovascular tissue engineering.


Subject(s)
Biocompatible Materials/metabolism , Collagen/metabolism , Elastin/metabolism , Tissue Engineering , Animals , Arteries/metabolism , Blood Platelets/metabolism , Cell Movement , Extracellular Matrix/metabolism , Immunohistochemistry , Models, Biological , Rats , Swine , Thrombosis/metabolism
17.
Acta Biomater ; 1(6): 607-14, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16701841

ABSTRACT

A novel type of capillary channel fibers (CCFs) containing eight open grooves with depth of 5-15 microm and width of 10 microm were tested for their use in tissue engineering as matrices that provide topographical guidance to neo-tissue development. The matrices fabricated from fibers of poly(l-lactic acid) (PLA) and polyethylene terephthalate (PET) were seeded with rat skin fibroblasts (RSFs) and rat aortic smooth muscle cells (RASMCs) for up to 4 weeks. Cells attached and extended their cytoplasmic lamellapodia within the grooves. The cells were proliferating within the grooves and were highly aligned parallel to the direction of the grooves. RASMCs and RSFs showed highly aligned actin and vimentin cytoskeleton, respectively. The cells also deposited extracellular matrix proteins such as laminin and collagen within the grooves parallel to the groove direction. These CCFs also have the unique ability to move fluids instantaneously by capillary action, thus, have the potential to transport oxygen and nutrients deep within the scaffolds. Such CCF matrices would be useful for creating highly organized tissues such as tendon, ligament, nerve, and cardiac muscle.


Subject(s)
Biocompatible Materials/chemistry , Fibroblasts/cytology , Fibroblasts/physiology , Guided Tissue Regeneration/methods , Myocytes, Smooth Muscle/physiology , Tissue Engineering/methods , Animals , Capillaries , Cell Adhesion/physiology , Cell Polarity , Cell Proliferation , Cells, Cultured , Materials Testing , Myocytes, Smooth Muscle/cytology , Porosity , Rats , Rats, Sprague-Dawley , Skin/cytology , Skin Physiological Phenomena
18.
Biomaterials ; 25(22): 5227-37, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15110474

ABSTRACT

Decellularized vascular matrices are used as scaffolds in cardiovascular tissue engineering because they retain their natural biological composition and three-dimensional (3-D) architecture suitable for cell adhesion and proliferation. However, cell infiltration and subsequent repopulation of these scaffolds was shown to be unsatisfactory due to their dense collagen and elastic fiber networks. In an attempt to create more porous structures for cell repopulation, we selectively removed matrix components from decellularized porcine aorta to obtain two types of scaffolds, namely elastin and collagen scaffolds. Histology and scanning electron microscopy examination of the two scaffolds revealed a well-oriented porous decellularized structure that maintained natural architecture of the aorta. Quantitative DNA analysis confirmed that both scaffolds were completely decellularized. Stress-strain analysis demonstrated adequate mechanical properties for both elastin and collagen scaffolds. In vitro enzyme digestion of the scaffolds suggested that they were highly biodegradable. Furthermore, the biodegradability of collagen scaffolds could be controlled by crosslinking with carbodiimides. Cell culture studies showed that fibroblasts adhered to and proliferated on the scaffold surfaces with excellent cell viability. Fibroblasts infiltrated about 120 microm into elastin scaffolds and about 40 microm into collagen scaffolds after 4 weeks of rotary cell culture. These results indicated that our novel aortic elastin and collagen matrices have the potential to serve as scaffolds for cardiovascular tissue engineering.


Subject(s)
Aorta/pathology , Biocompatible Materials , Collagen/chemistry , Elastin/chemistry , Tissue Engineering/methods , Animals , Cell Adhesion , Cell Culture Techniques/methods , Cell Proliferation , Cell Survival , DNA/chemistry , Fibroblasts/metabolism , Microscopy, Electron, Scanning , Sodium Dodecyl Sulfate/chemistry , Swine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...