Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(13): 19819-19830, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266084

ABSTRACT

Optical vortex, typically characterized by a helical phase front, results in a possession of orbital angular momentum. In recent years, teleportation of the vortex mode using novel beams with peculiar features has gained great interest. Here, we experimentally demonstrate the propagation dynamics for a new class of the auto-focusing vortex circular Pearcey beam (VCPB), which is theoretically described by delivering the coaxial or off-axial spiral phases into the circular Pearcey beam (CPB), forming the crescent or bottle-like focal structure with self-rotation. Notably, such a hybrid beam with various types is experimentally obtained through a digital micromirror device (DMD) with the binary amplitude holography, and this DMD-based modulation scheme combined with controllable vortex modes enables dynamic switching among the VCPBs. We also measure the topological phase by interferometry and we explain the beam property on the basis of Poynting vector, showing a good agreement with the simulations. Further, the number, location and mode of embedded vortices could offer multiple dimensions of flexibility for target beam modulation, thus the experimentally controllable VCPBs will bring potential to high-speed optical communications and particle manipulations that require dynamic shaping.

2.
Sci Rep ; 9(1): 17817, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31767958

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 8(1): 8593, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29872108

ABSTRACT

We report on a novel kind of accelerating beams that follow parabolic paths in free space. In fact, this accelerating peculiar polygon beam (APPB) is induced by the spectral phase symmetrization of the regular polygon beam (RPB) with five intensity beam (RPB) with five intensity peaks, and it preserves a peculiar symmetric structure during propagation. Specially, such beam not only exhibits autofocusing property, but also possesses two types of accelerating intensity maxima, i.e., the cusp and spot-point structure, which does not exist in the previously reported accelerating beams. We also provide a detailed insight into the theoretical origin and characteristics of this spatially accelerating beam through catastrophe theory. Moreover, an experimental scheme based on a digital micromirror device (DMD) with the binary spectral hologram is proposed to generate the target beam by precise modulation, and a longitudinal needle-like focus is observed around the focal region. The experimental results confirm the peculiar features presented in the theoretical findings. Further, the APPB is verified to exhibit self-healing property during propagation with either obstructed cusp or spot intensity maxima point reconstructing after a certain distance. Hence, we believe that the APPB will facilitate the applications in the areas of particle manipulation, material processing and optofludics.

4.
Opt Express ; 26(6): 7324-7335, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29609289

ABSTRACT

Photons in an optical vortex usually carry orbital angular momentum, which boosts the application of the micro-rotation of absorbing particles and quantum information encoding. Such photons propagate along a straight line in free space or follow a curved trace once guided by an optical fiber. Teleportation of an optical vortex using a beam with non-diffraction and self-healing is quite challenging. We demonstrate the manipulation of the propagation trace of an optical vortex with a symmetric Airy beam (SAB) and found that the SAB experiences self-rotation with the implementation of a topological phase structure of coaxial vortex. Slight misalignment of the vortex and the SAB enables the guiding of the vortex into one of the self-accelerating channels. Multiple off-axis vortices embedded in SAB are also demonstrated to follow the trajectory of the major lobe for the SAB beam. The Poynting vector for the beams proves the direction of the energy flow corresponding to the intensity distribution. Hence, we anticipate that the proposed vortex symmetric Airy beam (VSAB) will provide new possibilities for optical manipulation and optical communication.

5.
Appl Opt ; 54(27): 8030-5, 2015 Sep 20.
Article in English | MEDLINE | ID: mdl-26406501

ABSTRACT

Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.


Subject(s)
Optical Devices , Refractometry/instrumentation , Refractometry/methods , Computer Simulation , Equipment Design , Light , Microscopy/instrumentation , Normal Distribution , Optics and Photonics , Photons , Physics/methods , Quantum Theory , Scattering, Radiation
6.
Appl Opt ; 53(24): 5307-11, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25321100

ABSTRACT

The irradiance in microscopic lithography using a digital micro-mirror device (DMD) as a virtual digital mask generator is influenced by diffraction effects that have been exploited to fabricate microstructures. Based on the established model, the theoretical analysis and simulation of DMD diffraction characteristics has been studied. A novel method without masking to fabricate a micro-lens by pixilation of micro-mirrors inside the DMDs used in microscopic lithography has been proposed. It is a method of precise control of photon-induced curing behavior of photoresist by full use of diffraction effects and verification of the feasibility of the fabrication method based on diffraction. The introduced method provides an option for accurate and flexible micro-fabrication of microstructures.


Subject(s)
Lenses , Photography/instrumentation , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL
...