Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
Cells ; 12(17)2023 09 02.
Article in English | MEDLINE | ID: mdl-37681930

ABSTRACT

Dermatomyositis (DM), antisynthetase syndrome (AS), immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM) are four major types of idiopathic inflammatory myopathy (IIM). Muscle biopsies from each type of IIM have unique transcriptomic profiles. MicroRNAs (miRNAs) target messenger RNAs (mRNAs), thereby regulating their expression and modulating transcriptomic profiles. In this study, 18 DM, 12 IMNM, 6 AS, 6 IBM, and 6 histologically normal muscle biopsies underwent miRNA profiling using the NanoString nCounter system. Eleven miRNAs were exclusively differentially expressed in DM compared to controls, seven miRNAs were only differentially expressed in AS, and nine miRNAs were specifically upregulated in IBM. No differentially expressed miRNAs were identified in IMNM. We also analyzed miRNA-mRNA associations to identify putative targets of differentially expressed miRNAs. In DM and AS, these were predominantly related to inflammation and cell cycle progression. Moreover, our analysis showed an association between miR-30a-3p, miR-30e-3p, and miR-199b-5p downregulation in DM and the upregulation of target genes induced by type I interferon. In conclusion, we show that muscle biopsies from DM, AS, and IBM patients have unique miRNA signatures and that these miRNAs might play a role in regulating the expression of genes known to be involved in IIM pathogenesis.


Subject(s)
Autoimmune Diseases , MicroRNAs , Myositis, Inclusion Body , Myositis , Humans , Myositis/genetics , MicroRNAs/genetics , RNA, Messenger
3.
Lupus Sci Med ; 9(1)2022 10.
Article in English | MEDLINE | ID: mdl-36220328

ABSTRACT

OBJECTIVE: In patients with systemic lupus erythematosus (SLE), fatigue is a debilitating symptom with poorly understood pathophysiology. Cardiorespiratory dysfunction has been hypothesised as a contributor to SLE-fatigue. The purpose of this exploratory study was to examine changes in cardiorespiratory function, following an exercise training programme in women with SLE, together with patient reported outcomes and other pathophysiological measures that may underlie SLE-fatigue. METHODS: Sixteen women with SLE and fatigue (Fatigue Severity Scale (FSS) ≥3) were enrolled in a supervised aerobic exercise training programme of vigorous intensity. The primary outcome was time to reach anaerobic threshold (AT-Time) during a cardiopulmonary exercise test (CPET). Secondary outcomes included changes in the 10-minute walk test (10MWT), FSS scores and the Patient Reported Outcomes Measurement Information System (PROMIS-57) survey. Mitochondrial function was assessed by the oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) metabolic potential ratio. RESULTS: Following 12 weeks of exercise training, AT-Time increased by 93±82 (mean±SD) s (p<0.001), 10MWT increased by 84±66 m (p<0.001) and peak oxygen uptake (VO2) increased by 1.4±2.0 mL/kg/min (p=0.013). There were improvements in FSS score (-1.4±1.0, p<0.0001) and in most of the PROMIS-57 domains. The decrease in FSS scores correlated with an increase in the OCR/ECAR ratio (Pearson's correlation r=-0.59, p=0.03). A subset of subjects (9/15) had significant reduction in their Interferon Stimulated Genes (ISG) (p=0.007) accompanied by a significant increase in the OCR/ECAR ratio (p=0.013). CONCLUSIONS: Cardiorespiratory function was improved in concomitance with reductions in fatigue following a 12-week aerobic exercise programme. The reduction in fatigue scores correlated with improvements in mitochondrial function.


Subject(s)
Lupus Erythematosus, Systemic , Exercise/physiology , Fatigue/complications , Fatigue/diagnosis , Female , Humans , Interferons , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/therapy , Oxygen , Pilot Projects
4.
Ann Rheum Dis ; 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35914929

ABSTRACT

OBJECTIVES: Premature cardiovascular events in systemic lupus erythematosus (SLE) contribute to morbidity and mortality, with no effective preventive strategies described to date. Immune dysregulation and metabolic disturbances appear to play prominent roles in the induction of vascular disease in SLE. The peroxisome proliferator activated receptor-gamma agonist pioglitazone (PGZ suppresses vascular damage and immune dysregulation in murine lupus and improves endothelial dysfunction in other inflammatory diseases. We hypothesised that PGZ could improve vascular dysfunction and cardiometabolic parameters in SLE. METHODS: Eighty SLE subjects with mild to severe disease activity were randomised to a sequence of PGZ followed by placebo for 3 months, or vice versa, in a double-blind, cross-over design with a 2-month wash-out period. Primary endpoints were parameters of endothelial function and arterial inflammation, measured by multimodal assessments. Additional outcome measures of disease activity, neutrophil dysregulation, metabolic disturbances and gene expression studies were performed. RESULTS: Seventy-two subjects completed the study. PGZ was associated with a significant reduction in Cardio-Ankle Vascular Index (a measure of arterial stiffness) compared with placebo. Various metabolic parameters improved with PGZ, including insulin resistance and lipoprotein profiles. Circulating neutrophil extracellular trap levels also significantly decreased with PGZ compared with placebo. Most adverse events experienced while on PGZ were mild and resolved with reduction in PGZ dose. CONCLUSION: PGZ was well tolerated and induced significant improvement in vascular stiffness and cardiometabolic parameters in SLE. The results suggest that PGZ should be further explored as a modulator of cardiovascular disease risk in SLE. TRIAL REGISTRATION NUMBER: NCT02338999.

5.
Nat Commun ; 12(1): 3391, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099646

ABSTRACT

Increased risk of premature cardiovascular disease (CVD) is well recognized in systemic lupus erythematosus (SLE). Aberrant type I-Interferon (IFN)-neutrophil interactions contribute to this enhanced CVD risk. In lupus animal models, the Janus kinase (JAK) inhibitor tofacitinib improves clinical features, immune dysregulation and vascular dysfunction. We conducted a randomized, double-blind, placebo-controlled clinical trial of tofacitinib in SLE subjects (ClinicalTrials.gov NCT02535689). In this study, 30 subjects are randomized to tofacitinib (5 mg twice daily) or placebo in 2:1 block. The primary outcome of this study is safety and tolerability of tofacitinib. The secondary outcomes include clinical response and mechanistic studies. The tofacitinib is found to be safe in SLE meeting study's primary endpoint. We also show that tofacitinib improves cardiometabolic and immunologic parameters associated with the premature atherosclerosis in SLE. Tofacitinib improves high-density lipoprotein cholesterol levels (p = 0.0006, CI 95%: 4.12, 13.32) and particle number (p = 0.0008, CI 95%: 1.58, 5.33); lecithin: cholesterol acyltransferase concentration (p = 0.024, CI 95%: 1.1, -26.5), cholesterol efflux capacity (p = 0.08, CI 95%: -0.01, 0.24), improvements in arterial stiffness and endothelium-dependent vasorelaxation and decrease in type I IFN gene signature, low-density granulocytes and circulating NETs. Some of these improvements are more robust in subjects with STAT4 risk allele.


Subject(s)
Atherosclerosis/prevention & control , Janus Kinase Inhibitors/administration & dosage , Lupus Erythematosus, Systemic/drug therapy , Piperidines/administration & dosage , Pyrimidines/administration & dosage , Adult , Aged , Animals , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/immunology , Cholesterol, HDL/blood , Double-Blind Method , Female , Genetic Predisposition to Disease , Heart Disease Risk Factors , Humans , Janus Kinase Inhibitors/adverse effects , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/immunology , Male , Middle Aged , Piperidines/adverse effects , Pyrimidines/adverse effects , STAT4 Transcription Factor/genetics , Treatment Outcome , Vascular Stiffness/drug effects , Vasodilation/drug effects , Young Adult
7.
Clin Rheumatol ; 36(1): 143-154, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27864696

ABSTRACT

Axial spondyloarthritis (axSpA), which encompasses ankylosing spondylitis, is a complex genetic disease. Aberrant bone formation is a key feature of pathogenesis that can lead to ankylosis of the spine. Our objective is to determine, whether genes whose variants confer susceptibility to AS are expressed in bone progenitors like mesenchymal stem cells (MSCs). Since MSCs from bone marrow is difficult to obtain, we first examined, whether MSCs can be derived from induced pluripotent stem cells (iPSCs). Dermal fibroblasts of two axSpA patients and one healthy control were reprogrammed into iPSCs using a Sendai virus vector encoding pluripotency genes. Pluripotency of iPSCs was examined by embryoid body formation and by testing for stem cell specific gene and protein expression using RT-PCR and immuno fluorescence. iPSCs were differentiated into MSCs by a TGFß inhibitor. MSCs were characterized by flow cytometry using lineage specific antibodies and by their capacity to develop into chondrocytes, adipocytes, and osteoblasts in lineage-specific medium. RNA-seq was applied to determine genome-wide gene expression patterns in MSCs, iPSCs, and blood. We show for the first time, that expression levels of several AS susceptibility genes (EDIL3, ANO6, HAPLN1, ANTXR2) involved in bone formation are significantly elevated in MSCs (2-15-fold; p ≤ 0.05) compared to blood or iPSCs and demonstrate that iPSC-derived MSCs can be differentiated into osteoblasts, chondrocytes, and adipocytes. We conclude, MSCs generated from patient fibroblast-derived iPSC lines are useful tools for studying functional genomics of risk genes associated with bone formation in AS pathogenesis.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/metabolism , Adipocytes/cytology , Cell Differentiation , Cell Lineage , Chondrocytes/cytology , Fibroblasts/cytology , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Genetic Predisposition to Disease , Genetic Vectors , Humans , Microscopy, Fluorescence , Monocytes/cytology , Osteoblasts/cytology , Osteogenesis/genetics , Real-Time Polymerase Chain Reaction , Sendai virus
8.
Exp Cell Res ; 317(8): 1226-37, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21276443

ABSTRACT

The muscle-specific protein NRAP is concentrated at cardiac intercalated disks, plays a role in myofibril assembly, and is upregulated early in mouse models of dilated cardiomyopathy. Using a tet-off system, we developed novel transgenic lines exhibiting cardiac-specific NRAP overexpression ~2.5 times greater than normal. At 40-50 weeks, NRAP overexpression resulted in dilation and decreased ejection fraction in the right ventricle, with little effect on the left ventricle. Expression of transcripts encoding brain natriuretic peptide and skeletal α-actin was increased by cardiac-specific NRAP overexpression, indicative of a cardiomyopathic response. NRAP overexpression did not alter the levels or organization of N-cadherin and connexin-43. The results show that chronic NRAP overexpression in the mouse leads to right ventricular cardiomyopathy by 10 months, but that the early NRAP upregulation previously observed in some mouse models of dilated cardiomyopathy is unlikely to account for the remodeling of intercalated disks and left ventricular dysfunction observed in those cases.


Subject(s)
Muscle Proteins/metabolism , Myocardium/metabolism , Ventricular Dysfunction, Right/pathology , Ventricular Dysfunction, Right/physiopathology , Animals , Biomarkers/metabolism , Cardiomyopathy, Dilated/physiopathology , Echocardiography , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Muscle Proteins/genetics , Myocardium/cytology , Myocardium/pathology , Transgenes
9.
Am J Hum Genet ; 87(6): 842-7, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21109227

ABSTRACT

We identified a member of the BTB/Kelch protein family that is mutated in nemaline myopathy type 6 (NEM6), an autosomal-dominant neuromuscular disorder characterized by the presence of nemaline rods and core lesions in the skeletal myofibers. Analysis of affected families allowed narrowing of the candidate region on chromosome 15q22.31, and mutation screening led to the identification of a previously uncharacterized gene, KBTBD13, coding for a hypothetical protein and containing missense mutations that perfectly cosegregate with nemaline myopathy in the studied families. KBTBD13 contains a BTB/POZ domain and five Kelch repeats and is expressed primarily in skeletal and cardiac muscle. The identified disease-associated mutations, C.742C>A (p.Arg248Ser), c.1170G>C (p.Lys390Asn), and c.1222C>T (p.Arg408Cys), located in conserved domains of Kelch repeats, are predicted to disrupt the molecule's beta-propeller blades. Previously identified BTB/POZ/Kelch-domain-containing proteins have been implicated in a broad variety of biological processes, including cytoskeleton modulation, regulation of gene transcription, ubiquitination, and myofibril assembly. The functional role of KBTBD13 in skeletal muscle and the pathogenesis of NEM6 are subjects for further studies.


Subject(s)
Genes, Dominant , Muscle Proteins/genetics , Mutation, Missense , Myopathies, Nemaline/genetics , Age of Onset , Amino Acid Sequence , Animals , Child , Chromosomes, Human, Pair 15 , Humans , Immunohistochemistry , Molecular Sequence Data , Sequence Homology, Amino Acid
10.
Cell Motil Cytoskeleton ; 65(12): 945-54, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18792955

ABSTRACT

N-RAP alternative splicing and protein localization were studied in developing skeletal muscle tissue from pre- and postnatal mice and in fusing primary myotubes in culture. Messages encoding N-RAP-s and N-RAP-c, the predominant isoforms of N-RAP detected in adult skeletal muscle and heart, respectively, were present in a 5:1 ratio in skeletal muscle isolated from E16.5 embryos. N-RAP-s mRNA levels increased three-fold over the first 3 weeks of postnatal development, while N-RAP-c mRNA levels remained low. N-RAP alternative splicing during myotube differentiation in culture was similar to the pattern observed in embryonic and neonatal muscle, with N-RAP-s expression increasing and N-RAP-c mRNA levels remaining low. In both developing skeletal muscle and cultured myotubes, N-RAP protein was primarily associated with developing myofibrillar structures containing alpha-actinin, but was not present in mature myofibrils. The results establish that N-RAP-s is the predominant spliced form of N-RAP present throughout skeletal muscle development.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Developmental , Muscle Development/genetics , Muscle Proteins/genetics , Myofibrils/metabolism , Actinin/metabolism , Animals , Cells, Cultured , Exons/genetics , Gene Expression , Mice , Muscle Proteins/metabolism , Myofibrils/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
11.
Cell Motil Cytoskeleton ; 65(9): 747-61, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18615632

ABSTRACT

We investigated the role of nonmuscle myosin heavy chain (NMHC) IIB in cultured embryonic mouse cardiomyocytes by specific knockdown using RNA interference. NMHC IIB protein levels decreased 90% compared with mock-transfected cells by 3 days post transfection. NMHC IIB knockdown resulted in a slow decrease in N-RAP protein levels over 6 days with no change in N-RAP transcript levels. N-RAP is a scaffold for alpha-actinin and actin assembly during myofibrillogenesis, and we quantitated myofibril accumulation by morphometric analysis of alpha-actinin organization. Between 3 and 6 days, NMHC IIB knockdown was accompanied by the abolishment of cardiomyocyte spreading. During this period the rate of myofibril accumulation steadily decreased, correlating with the slowly decreasing levels of N-RAP. Between 6 and 8 days NMHC IIB and N-RAP protein levels recovered, and cardiomyocyte spreading and myofibril accumulation resumed. Inhibition of proteasome function using MG132 led to accumulation of excess N-RAP, and the secondary decrease in N-RAP that otherwise accompanied NMHC IIB knockdown was abolished. The results show that NMHC IIB knockdown led to decreased N-RAP levels through proteasome-mediated degradation. Furthermore, these proteins have distinct functional roles, with NMHC IIB playing a role in cardiomyocyte spreading and N-RAP functioning in myofibril assembly.


Subject(s)
Cell Movement , Muscle Proteins/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Nonmuscle Myosin Type IIB/metabolism , Animals , Cells, Cultured , Gene Expression Regulation , Mice , Muscle Proteins/genetics , Nonmuscle Myosin Type IIB/genetics , Peptide Fragments/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Processing, Post-Translational , Protein Transport , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Time Factors , Ubiquitin/metabolism
12.
Cell Motil Cytoskeleton ; 63(8): 493-511, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16767749

ABSTRACT

N-RAP is a muscle-specific protein concentrated in myofibril precursors during sarcomere assembly and at intercalated disks in adult heart. We used RNA interference to achieve a targeted decrease in N-RAP transcript and protein levels in primary cultures of embryonic mouse cardiomyocytes. N-RAP transcript levels were decreased by approximately 70% within 2 days following transfection with N-RAP specific siRNA. N-RAP protein levels steadily decreased over several days, reaching approximately 50% of control levels within 6 days. N-RAP protein knockdown was associated with decreased myofibril assembly, as assessed by alpha-actinin organization into mature striations. Transcripts encoding N-RAP binding proteins associated with assembling or mature myofibrils, such as alpha-actinin, Krp1, and muscle LIM protein, were expressed at normal levels during N-RAP protein knockdown, and alpha-actinin and Krp-1 protein levels were also unchanged. Transcripts encoding muscle myosin heavy chain and nonmuscle myosin heavy chain IIB were also expressed at relatively normal levels. However, decreased N-RAP protein levels were associated with dramatic changes in the encoded myosin proteins, with muscle myosin heavy chain levels increasing and nonmuscle myosin heavy chain IIB decreasing. N-RAP transcript and protein levels recovered to normal by days 6 and 7, respectively, and the changes in myofibril organization and myosin heavy chain isoform levels were reversed. Our data indicate that we can achieve transient N-RAP protein knockdown using the RNA interference technique and that alpha-actinin organization into myofibrils in cardiomyocytes is closely linked to N-RAP protein levels. Finally, N-RAP protein levels regulate the balance between nonmuscle myosin IIB and muscle myosin by post-trancriptional mechanisms.


Subject(s)
Muscle Proteins/genetics , Myofibrils/physiology , RNA Interference , Actinin/metabolism , Animals , Azepines/metabolism , Cardiac Myosins/metabolism , Cardiac Myosins/physiology , Cells, Cultured , Embryo, Mammalian , Gene Deletion , Gene Expression , Mice , Muscle Proteins/metabolism , Myofibrils/metabolism , Myosin Heavy Chains/biosynthesis , Myosin Heavy Chains/metabolism , Naphthalenes/metabolism , Nonmuscle Myosin Type IIB/biosynthesis , Nonmuscle Myosin Type IIB/metabolism , Phenotype , Protein Isoforms , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Transfection
13.
Dev Dyn ; 233(1): 201-12, 2005 May.
Article in English | MEDLINE | ID: mdl-15765519

ABSTRACT

N-RAP gene expression and N-RAP localization were studied during mouse heart development using semiquantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. N-RAP mRNA was detected at embryonic day (E) 10.5, significantly increased from E10.5 to E16.5, and remained essentially constant from E16.5 until 21 days after birth. In E9.5-10.5 heart tissue, N-RAP protein was primarily associated with developing premyofibril structures containing alpha-actinin, as well as with the Z-lines and M-lines of more-mature myofibrils. In contrast, N-cadherin was concentrated in patches at the periphery of the cardiomyocytes. N-RAP labeling markedly increased between E10.5 and E16.5; almost all of the up-regulated N-RAP was associated with intercalated disk structures, and the proportion of mature sarcomeres containing N-RAP decreased. In adult hearts, specific N-RAP staining was only observed at the intercalated disks and was not found in the sarcomeres. The results are consistent with N-RAP functioning as a catalytic scaffolding molecule, with low levels of the scaffold being sufficient to repetitively catalyze key steps in myofibril assembly.


Subject(s)
Heart/embryology , Muscle Proteins/metabolism , Actinin/genetics , Actinin/metabolism , Animals , Cadherins/genetics , Cadherins/metabolism , Heart/physiology , Mice , Muscle Proteins/genetics , Organ Specificity , RNA, Messenger/metabolism
14.
J Cell Sci ; 117(Pt 1): 105-14, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14657273

ABSTRACT

N-RAP is a muscle-specific protein with an N-terminal LIM domain (LIM), C-terminal actin-binding super repeats homologous to nebulin (SR) and nebulin-related simple repeats (IB) in between the two. Based on biochemical data, immunofluorescence analysis of cultured embryonic chick cardiomyocytes and the targeting and phenotypic effects of these individual GFP-tagged regions of N-RAP, we proposed a novel model for the initiation of myofibril assembly in which N-RAP organizes alpha-actinin and actin into the premyofibril I-Z-I complexes. We tested the proposed model by expressing deletion mutants of N-RAP (i.e. constructs containing two of the three regions of N-RAP) in chick cardiomyocytes and observing the effects on alpha-actinin and actin organization into mature sarcomeres. Although individually expressing either the LIM, IB, or SR regions of N-RAP inhibited alpha-actinin assembly into Z-lines, expression of either the LIM-IB fusion or the IB-SR fusion permitted normal alpha-actinin organization. In contrast, the LIM-SR fusion (LIM-SR) inhibited alpha-actinin organization into Z-lines, indicating that the IB region is critical for Z-line assembly. While permitting normal Z-line assembly, LIM-IB and IB-SR decreased sarcomeric actin staining intensity; however, the effects of LIM-IB on actin assembly were significantly more severe, as estimated both by morphological assessment and by quantitative measurement of actin staining intensity. In addition, LIM-IB was consistently retained in mature Z-lines, while mature Z-lines without significant IB-SR incorporation were often observed. We conclude that the N-RAP super repeats are essential for organizing actin filaments during myofibril assembly in cultured embryonic chick cardiomyocytes, and that they also play an important role in removal of the N-RAP scaffold from the completed myofibrillar structure. This work strongly supports the N-RAP scaffolding model of premyofibril assembly.


Subject(s)
Muscle Development/physiology , Muscle Proteins/metabolism , Myocytes, Cardiac/physiology , Actins/metabolism , Animals , Cells, Cultured , Chick Embryo , Green Fluorescent Proteins , Luminescent Proteins , Muscle, Skeletal/physiology , Mutation , Myocytes, Cardiac/cytology , Protein Binding , Protein Structure, Tertiary
15.
Cell Motil Cytoskeleton ; 55(3): 200-12, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12789664

ABSTRACT

Linkage analysis identifies 10q24-26 as a disease locus for dilated cardiomyopathy (DCM), a region including the N-RAP gene. N-RAP is a nebulin-like LIM protein that may mediate force transmission and myofibril assembly in cardiomyocytes. We describe the sequence, genomic structure, and expression of human N-RAP, as well as an initial screen to determine whether N-RAP mutations cause cardiomyopathy. Human expressed sequence tag databases were searched with the published 3,528-bp mouse N-RAP open reading frame (ORF). Putative cDNA sequences were interrogated by direct sequencing from cardiac and skeletal muscle RNA. We identified two human N-RAP isoforms with ORFs of 5,085 bp (isoform C) and 5,190 bp (isoform S), encoding products of 193-197 kDa. Genomic database searches localize N-RAP to human chromosome 10q25.3 and match isoforms C and S to 41 and 42 exons. Only isoform C is detected in human cardiac RNA; in skeletal muscle, approximately 10% is isoform C and approximately 90% is isoform S. We investigated apparent differences between human N-RAP cDNA and mouse sequences. Two mouse N-RAP isoforms with ORFs of 5,079 and 5,184 bp were identified with approximately 85% similarity to human isoforms; published mouse sequences include cloning artifacts truncating the ORF. Murine and human isoforms have similar gene structure, tissue specificity, and size. N-RAP is especially conserved within its nebulin-like and LIM domains. We expressed both N-RAP isoforms and the previously described truncated N-RAP in embryonic chick cardiomyocytes. All constructs targeted to myofibril precursors and the cell periphery, and inhibited myofibril assembly. Several human N-RAP polymorphisms were detected, but none were unique to cardiomyopathy patients. N-RAP is highly conserved and exclusively expressed in cardiac and skeletal muscle. Genetic abnormalities remain excellent candidate causes for cardiac and skeletal myopathies.


Subject(s)
Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Myocardium/metabolism , Alternative Splicing , Amino Acid Sequence , Animals , Chick Embryo , Humans , Mice , Molecular Sequence Data , Muscle Proteins/metabolism , Protein Isoforms , Sequence Analysis, DNA
16.
J Cell Sci ; 116(Pt 11): 2169-78, 2003 Jun 01.
Article in English | MEDLINE | ID: mdl-12692149

ABSTRACT

N-RAP, a muscle-specific protein concentrated at myotendinous junctions in skeletal muscle and intercalated disks in cardiac muscle, has been implicated in myofibril assembly. To discover more about the role of N-RAP in myofibril assembly, we used the yeast two-hybrid system to screen a mouse skeletal muscle cDNA library for proteins capable of binding N-RAP in a eukaryotic cell. From yeast two-hybrid experiments we were able to identify three new N-RAP binding partners: alpha-actinin, filamin-2, and Krp1 (also called sarcosin). In vitro binding assays were used to verify these interactions and to identify the N-RAP domains involved. Three regions of N-RAP were expressed as His-tagged recombinant proteins, including the nebulin-like super repeat region (N-RAP-SR), the N-terminal LIM domain (N-RAP-LIM), and the region of N-RAP in between the super repeat region and the LIM domain (N-RAP-IB). We detected significant alpha-actinin binding to N-RAP-IB and N-RAP-LIM, filamin binding to N-RAP-SR, and Krp1 binding to N-RAP-SR and N-RAP-IB. During myofibril assembly in cultured chick cardiomyocytes, N-RAP and filamin appear to co-localize with alpha-actinin in the earliest myofibril precursors found near the cell periphery, as well as in the nascent myofibrils that form as these structures fuse laterally. In contrast, Krp1 is not localized until late in the assembly process, when it appears at the periphery of myofibrils that appear to be fusing laterally. The results suggest that sequential recruitment of N-RAP binding partners may serve an important role during myofibril assembly.


Subject(s)
Actinin/metabolism , Carrier Proteins/metabolism , Contractile Proteins/metabolism , Cytoskeletal Proteins , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Myofibrils/metabolism , Actinin/genetics , Animals , Carrier Proteins/genetics , Cells, Cultured , Chick Embryo , Contractile Proteins/genetics , Filamins , Mice , Microfilament Proteins/genetics , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Protein Binding/physiology , Rats , Two-Hybrid System Techniques , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...