Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(30): eadk5509, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39047104

ABSTRACT

Epitaxial crystallization of complex oxides provides the means to create materials with precisely selected composition, strain, and orientation, thereby controlling their functionalities. Extending this control to nanoscale three-dimensional geometries can be accomplished via a three-dimensional analog of oxide solid-phase epitaxy, lateral epitaxial crystallization. The orientation of crystals within laterally crystallized SrTiO3 systematically changes from the orientation of the SrTiO3 substrate. This evolution occurs as a function of lateral crystallization distance, with a rate of approximately 50° µm-1. The mechanism of the rotation is consistent with a steady-state stress of tens of megapascal over a 100-nanometer scale region near the moving amorphous/crystalline interface arising from the amorphous-crystalline density difference. Second harmonic generation and piezoelectric force microscopy reveal that the laterally crystallized SrTiO3 is noncentrosymmetric and develops a switchable piezoelectric response at room temperature, illustrating the potential to use lateral crystallization to control the functionality of complex oxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...