Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Vasc Surg Venous Lymphat Disord ; 12(1): 101666, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37619711

ABSTRACT

BACKGROUND: Venous thromboembolism (VTE) has both environmental and genetic risk factors. It is regulated by polygenes and multisites. The polygenic risk score (PRS) has been widely used because any single genetic biomarker failed to accurately predict the genetic risk of VTE. However, no polygenic risk model has been proposed for VTE in the Chinese population. Thus, we aimed to construct a PRS model for the first episode of VTE in the Chinese population. METHODS: First, single nucleotide polymorphisms (SNPs) associated with VTE in genome-wide association studies, meta-analyses, and candidate gene studies were screened as variables for the PRS. The logarithm of the odds ratio was used to weight the variables. Second, a training set with simulated data from 1000 cases of VTE and 1000 controls was created with different genotypes and frequencies. Finally, we calculated the area under the receiver operating characteristic curve (AUC) to evaluate the discriminatory ability of the PRS model. RESULTS: We screened 53 SNPs potentially associated with the first episode of VTE in the Chinese population. The AUC of the PRS-53 model (containing 53 SNPs) was 0.748 (95% confidence interval, 0.727-0.770) in the training set. From the largest weight to the smallest weight, SNPs were incrementally added to the model to calculate the AUC for model optimization. The AUC of the PRS-10 model (containing 10 SNPs) was 0.718 (95% confidence interval, 0.696-0.740), with no statistically significant difference from the AUC for the PRS-53 model. CONCLUSIONS: The PRS-10 and PRS-53 models showed similar predictive abilities and satisfactory discriminatory power and can be used to predict the genetic risk of the first episode of VTE in the Chinese population. The simplified PRS-10 model is more efficient in clinical practice.


Subject(s)
Venous Thromboembolism , Humans , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology , Venous Thromboembolism/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease , Risk Factors , Genetic Risk Score , China/epidemiology
2.
DNA Repair (Amst) ; 133: 103604, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992567

ABSTRACT

Nei endonuclease VIII-like 3 (NEIL3), a novel tumor-related gene, is differentially expressed and involved in pathophysiological processes in multiple tumors. However, the potential biological functions and molecular mechanisms of NEIL3 in human clear cell renal cell carcinoma (ccRCC) have not been identified. In this research, we demonstrated that NEIL3, transcriptionally activated by E2F1, served as an oncogene to facilitate cell proliferation and cell cycle progression and contribute to tumorigenesis via the cyclin D1-Rb-E2F1 feedback loop in ccRCC. First, we found that NEIL3 expression was upregulated in ccRCC tissues and cell lines compared with matched adjacent nontumor tissues and renal tubular epithelial cells and was also positively correlated with adverse clinicopathological characteristics, such as advanced cancer stages and higher tumor grades, and acted as an independent prognostic marker in ccRCC. Mechanistically, we demonstrated that NEIL3 promoted cell proliferation, DNA replication and cell cycle progression in vitro and tumor growth in vivo. Furthermore, we found that NEIL3 overexpression activated the cyclin D1-Rb-E2F1 pathway, and the E2F1 upregulation transcriptionally activated NEIL3 expression, thus forming a feedback loop. In addition, there was a positive correlation between NEIL3 and E2F1 expression in clinical specimens of ccRCC. Taken together, our results suggest that NEIL3 serves as a proto-oncogene in ccRCC and presents as a novel candidate for ccRCC diagnosis and treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cyclin D1/genetics , Cyclin D1/metabolism , Feedback , Cell Line, Tumor , Cell Proliferation/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Gene Expression Regulation, Neoplastic , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism
3.
Oncol Rep ; 50(4)2023 Oct.
Article in English | MEDLINE | ID: mdl-37615195

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the tumour images shown in Fig. 7A and certain of the cell proliferation assay images shown in Fig. 3B were strikingly similar to data that had already appeared in another article written by different authors at different research institutes [Xiao W Wang, J, Li H, Xia D, Yu G, Yao W, Yang Y, Xiao H, Lang B, Ma X et al: Fibulin­1 is epigenetically down­regulated and related with bladder cancer recurrence. BMC Cancer 14: 677, 2014]. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncol Rep 38: 2435­2443, 2017; DOI: 10.3892/or.2017.5884].

4.
J Pharm Anal ; 13(3): 262-275, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37102105

ABSTRACT

The development of chemoresistance which results in a poor prognosis often renders current treatments for colorectal cancer (CRC). In this study, we identified reduced microvessel density (MVD) and vascular immaturity resulting from endothelial apoptosis as therapeutic targets for overcoming chemoresistance. We focused on the effect of metformin on MVD, vascular maturity, and endothelial apoptosis of CRCs with a non-angiogenic phenotype, and further investigated its effect in overcoming chemoresistance. In situ transplanted cancer models were established to compare MVD, endothelial apoptosis and vascular maturity, and function in tumors from metformin- and vehicle-treated mice. An in vitro co-culture system was used to observe the effects of metformin on tumor cell-induced endothelial apoptosis. Transcriptome sequencing was performed for genetic screening. Non-angiogenic CRC developed independently of angiogenesis and was characterized by vascular leakage, immaturity, reduced MVD, and non-hypoxia. This phenomenon had also been observed in human CRC. Furthermore, non-angiogenic CRCs showed a worse response to chemotherapeutic drugs in vivo than in vitro. By suppressing endothelial apoptosis, metformin sensitized non-angiogenic CRCs to chemo-drugs via elevation of MVD and improvement of vascular maturity. Further results showed that endothelial apoptosis was induced by tumor cells via activation of caspase signaling, which was abrogated by metformin administration. These findings provide pre-clinical evidence for the involvement of endothelial apoptosis and subsequent vascular immaturity in the chemoresistance of non-angiogenic CRC. By suppressing endothelial apoptosis, metformin restores vascular maturity and function and sensitizes CRC to chemotherapeutic drugs via a vascular mechanism.

5.
J Endovasc Ther ; : 15266028231158294, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36891634

ABSTRACT

PURPOSE: This study aimed to develop and internally validate nomograms for predicting restenosis after endovascular treatment of lower extremity arterial diseases. MATERIALS AND METHODS: A total of 181 hospitalized patients with lower extremity arterial disease diagnosed for the first time between 2018 and 2019 were retrospectively collected. Patients were randomly divided into a primary cohort (n=127) and a validation cohort (n=54) at a ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) regression was used to optimize the feature selection of the prediction model. Combined with the best characteristics of LASSO regression, the prediction model was established by multivariate Cox regression analysis. The predictive models' identification, calibration, and clinical practicability were evaluated by the C index, calibration curve, and decision curve. The prognosis of patients with different grades was compared by survival analysis. Internal validation of the model used data from the validation cohort. RESULTS: The predictive factors included in the nomogram were lesion site, use of antiplatelet drugs, application of drug coating technology, calibration, coronary heart disease, and international normalized ratio (INR). The prediction model demonstrated good calibration ability, and the C index was 0.762 (95% confidence interval: 0.691-0.823). The C index of the validation cohort was 0.864 (95% confidence interval: 0.801-0.927), which also showed good calibration ability. The decision curve shows that when the threshold probability of the prediction model is more significant than 2.5%, the patients benefit significantly from our prediction model, and the maximum net benefit rate is 30.9%. Patients were graded according to the nomogram. Survival analysis found that there was a significant difference in the postoperative primary patency rate between patients of different classifications (log-rank p<0.001) in both the primary cohort and the validation cohort. CONCLUSION: We developed a nomogram to predict the risk of target vessel restenosis after endovascular treatment by considering information on lesion site, postoperative antiplatelet drugs, calcification, coronary heart disease, drug coating technology, and INR. CLINICAL IMPACT: Clinicians can grade patients after endovascular procedure according to the scores of the nomograms and apply intervention measures of different intensities for people at different risk levels. During the follow-up process, an individualized follow-up plan can be further formulated according to the risk classification. Identifying and analyzing risk factors is essential for making appropriate clinical decisions to prevent restenosis.

6.
Biomed Pharmacother ; 161: 114423, 2023 May.
Article in English | MEDLINE | ID: mdl-36822023

ABSTRACT

Triple negative breast cancer (TNBC) is an invasive and metastatic phenotype of breast cancer with limited treatment options. Published studies have demonstrated an inhibitory effect of HIF-α inhibition by its inhibitor YC-1 (lificiguat) on growth and angiogenesis of TNBC. However, the underlying mechanism remains poorly understood. In the current paper, our results show that HIF-1α inhibitor significantly inhibited TNBC growth by increasing cellular apoptosis and decreasing MVD, independent of a cell-autonomous mechanism in both endothelial and tumor cells. Genetic screening and in vivo experiments showed that a large number of M2-polarized TAMs accumulated in the hypoxic peri-necrotic region (PNR), where placental growth factor (PlGF) and its ligand, vascular endothelial growth factor receptor-1 (VEGFR-1) were upregulated. Furthermore, YC-1 skewed the polarization of TAMs away from M2 to M1 phenotype, therefore inhibiting TNBC angiogenesis and growth. This effect was further abrogated by VEGFR-1 neutralization and TAM depletion following clodronate liposome injection. These findings provide preclinical evidence for an indirect mechanism underlying YC-1-induced suppression of TNBC growth and angiogenesis, thereby offering a treatment option for TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/drug therapy , Placenta Growth Factor , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1 , Macrophages/metabolism , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit
7.
J Nanobiotechnology ; 20(1): 422, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153544

ABSTRACT

BACKGROUND: Patients with critical limb ischemia (CLI) are at great risk of major amputation and cardiovascular events. Adipose-derived mesenchymal stem cell (ADSC) therapy is a promising therapeutic strategy for CLI, but the poor engraftment and insufficient angiogenic ability of ADSCs limit their regenerative potential. Herein, we explored the potential of human umbilical vein endothelial cells (HUVECs)-derived small extracellular vesicles (sEVs) for enhancing the therapeutic efficacy of ADSCs in CLI. RESULTS: sEVs derived from hypoxic HUVECs enhanced the resistance of ADSCs to reactive oxygen species (ROS) and further improved the proangiogenic ability of ADSCs in vitro. We found that the hypoxic environment altered the composition of sEVs from HUVECs and that hypoxia increased the level of miR-486-5p in sEVs. Compared to normoxic sEVs (nsEVs), hypoxic sEVs (hsEVs) of HUVECs significantly downregulated the phosphatase and tensin homolog (PTEN) via direct targeting of miR-486-5p, therefore activating the AKT/MTOR/HIF-1α pathway and influencing the survival and pro-angiogenesis ability of ADSCs. In a hindlimb ischemia model, we discovered that hsEVs-primed ADSCs exhibited superior cell engraftment, and resulted in better angiogenesis and tissue repair. CONCLUSION: hsEVs could be used as a therapeutic booster to improve the curative potential of ADSCs in a limb ischemia model. This finding offers new insight for CLI treatment.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Adipose Tissue/metabolism , Animals , Extracellular Vesicles/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hypoxia/metabolism , Ischemia/metabolism , Ischemia/therapy , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism , Tensins/metabolism
8.
EMBO J ; 41(17): e111799, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35844093

ABSTRACT

Piezo1 belongs to mechano-activatable cation channels serving as biological force sensors. However, the molecular events downstream of Piezo1 activation remain unclear. In this study, we used biosensors based on fluorescence resonance energy transfer (FRET) to investigate the dynamic modes of Piezo1-mediated signaling and revealed a bimodal pattern of Piezo1-induced intracellular calcium signaling. Laser-induced shockwaves (LIS) and its associated shear stress can mechanically activate Piezo1 to induce transient intracellular calcium (Ca[i] ) elevation, accompanied by an increase in FAK activity. Interestingly, multiple pulses of shockwave stimulation caused a more sustained calcium increase and a decrease in FAK activity. Similarly, tuning the degree of Piezo1 activation by titrating either the dosage of Piezo1 ligand Yoda1 or the expression level of Piezo1 produced a similar bimodal pattern of FAK responses. Further investigations revealed that SHP2 serves as an intermediate regulator mediating this bimodal pattern in Piezo1 sensing and signaling. These results suggest that the degrees of Piezo1 activation induced by both mechanical LIS and chemical ligand stimulation may determine downstream signaling characteristics.


Subject(s)
Calcium , Ion Channels , Calcium/metabolism , Calcium Signaling , Ion Channels/genetics , Ion Channels/metabolism , Ligands , Mechanotransduction, Cellular/physiology
9.
J Surg Res ; 278: 303-316, 2022 10.
Article in English | MEDLINE | ID: mdl-35660302

ABSTRACT

INTRODUCTION: Chronic limb threat ischemia is associated with cardiovascular events, resulting in high amputation, morbidity and mortality rates. This study aims to accomplish a comprehensive summary of randomized controlled trials and single-center trials related to drug-coated balloons (DCBs) in the treatment of below-the-knee (BTK) artery disease, and to provide a recommendation for the application of DCBs in BTK artery disease. METHODS: Five electronic databases were used to retrieve relevant articles on the safety and effectiveness of DCBs in the treatment of BTK artery disease. A random-effects model was applied to calculate the standard mean deviation, odds ratio (OR) and their 95% of confidence interval (CI). RESULTS: As of April 8, 2021, a total of 241 articles were retrieved, but only 13 articles were finally included for meta-analysis. The 12 mo follow-up study found that major adverse events , all-cause mortality, major amputation ,and target lesion revascularization had no statistically significant difference between the DCBs group and the control group (target lesion revascularization: OR = 0.68, 95% CI: 0.36, 1.31; all-cause mortality: OR = 1.30, 95% CI: 0.69, 2.46; major amputation: OR = 1.34, 95% CI: 0.64, 2.79; target lesion revascularization: OR = 0.72, 95% CI: 0.35, 1.45). CONCLUSIONS: The meta-analysis results of randomized controlled trials focusing on comparing DCBs and other treatments suggest that DCBs do not have significant advantages in the treatment of BTK artery disease when compare with percutaneous transluminal angioplasty (PTA), but better than control intervention except PTA in both safety and efficacy end points. However, the results of meta-analysis of single-arm trial reported DCBs in treating BTK artery lesions are significantly improved compared with the meta-analysis concentrating on PTA.


Subject(s)
Angioplasty, Balloon , Peripheral Arterial Disease , Angioplasty, Balloon/adverse effects , Angioplasty, Balloon/methods , Coated Materials, Biocompatible , Femoral Artery/surgery , Follow-Up Studies , Humans , Ischemia/therapy , Paclitaxel/adverse effects , Peripheral Arterial Disease/surgery , Popliteal Artery/surgery , Randomized Controlled Trials as Topic , Time Factors , Treatment Outcome , Vascular Patency
10.
Dis Markers ; 2022: 6205190, 2022.
Article in English | MEDLINE | ID: mdl-35571621

ABSTRACT

The aim of this study was to explore the role of ILK in an in vitro model of diabetic cardiomyopathy. We used 30 mmol/L high glucose to treat H9C2 cells to construct an in vitro model, knocked down the ILK expression level of H9C2 cells by small interference technology, and detected the activity of antioxidant enzymes and inflammatory factors in the supernatant. The expression levels of SOD1 and IL-1ß were detected by immunofluorescence staining. The expression levels of the TLR4/MyD88/NF-κB signaling pathway and its downstream factors were detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Compared with the control group, after high-glucose culture of H9C2 cells, the cell activity decreased, while the apoptosis rate increased, with the TLR4/MyD88/NF-κB signaling pathway activated, thereby inducing oxidative stress and inflammation. Compared with the high-glucose group, the HG+si-ILK group increased cell activity, decreased the apoptosis rate, and inhibited the excessive activation of the TLR4/MyD88/NF-κB signaling pathway, thereby improving oxidative stress and inflammation. Knockdown of ILK expression can protect H9C2 cells from reducing high glucose-induced inflammation, oxidative stress, and apoptosis by inhibiting the TLR4/MyD88/NF-κB signaling pathway.


Subject(s)
Myeloid Differentiation Factor 88 , NF-kappa B , Glucose , Humans , Inflammation/metabolism , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
11.
Phytomedicine ; 96: 153908, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026516

ABSTRACT

BACKGROUND: Therapeutic angiogenesis by transplantation of autologous/allogeneic adipose stem cells (ADSCs) is a potential method for the treatment of critical limb ischemia (CLI). However, the therapeutic efficiency is limited by poor viability, adhesion, migration and differentiation after cell transplantation into the target area. Astragaloside IV (AS-IV), one of the main active components of Astragalus, has been widely used in the treatment of ischemic diseases and can promote cell proliferation and angiogenesis. However, there is no report on the effect of AS-IV on ADSCs and its effect on hindlimb ischemia through cell transplantation. PURPOSE: The purpose of this study was to elucidate that AS-IV pretreatment enhances the therapeutic effect of ADSC on critical limb ischemia, and to characterize the underlying molecular mechanisms. METHODS: ADSCs were obtained and pretreated with the different concentration of AS-IV. In vitro, we analyzed the influence of AS-IV on ADSC proliferation, migration, angiogenesis and recruitment of human umbilical vein endothelial cells (HUVECs) and analyzed the relevant molecular mechanism. In vivo, we injected drug-pretreated ADSCs into a Matrigel or hindlimb ischemia model and evaluated the therapeutic effect by the laser Doppler perfusion index, immunofluorescence, and histopathology. RESULTS: In vitro experiments showed that AS-IV improved ADSC migration, angiogenesis and endothelial recruitment. The molecular mechanism may be related to the upregulation of CXC receptor 2 (CXCR2) to promote the phosphorylation of focal adhesion kinase (FAK). In vivo, Matrigel plug assay showed that ADSCs pretreated with AS-IV have stronger angiogenic potential. The laser Doppler perfusion index of the hindlimbs of mice in the ADSC/AS-IV group was significantly higher than the laser Doppler perfusion index of the hindlimbs of mice of the ADSC group and the control group, and the microvessel density was significantly increased. CONCLUSION: Our results demonstrate that AS-IV pretreatment of ADSC improves their therapeutic efficacy in ameliorating severe limb exclusion symptomology through CXCR2 induced FAK phosphorylation, which will bring new insights into the treatment of severe limb ischemia.


Subject(s)
Mesenchymal Stem Cells , Neovascularization, Physiologic , Adipose Tissue , Animals , Cell Proliferation , Chronic Limb-Threatening Ischemia , Focal Adhesion Kinase 1 , Focal Adhesion Protein-Tyrosine Kinases , Hindlimb , Human Umbilical Vein Endothelial Cells , Humans , Ischemia/drug therapy , Mice , Phosphorylation , Receptors, Interleukin-8B , Saponins , Triterpenes
12.
Anticancer Drugs ; 33(1): e103-e112, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34407043

ABSTRACT

In our previous studies, we found that T24 lung metastatic cancer cells showed high invasion and metastasis abilities and cancer stem cell characteristics compared with T24 primary cancer cells. By screening for the expression of CXC chemokines in both cell lines, we found that CXCL5 is highly expressed in T24-L cells. The aim of this study is to shed light on the relationship of CXCL5 with epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs). RNAi technology was used to decrease CXCL5 expression in the T24-L cell line, and the EMT and CSCs of the shCXCL5 group and the control group were compared. The CXCR2 inhibitor SB225002 was used to inhibit the receptor of CXCL5 to determine the effect of the CXCL5/CXCR2 axis. The knockdown of CXCL5 expression in T24-L cells reduced their EMT and CSC characteristics. RT-PCR and Western blot analyses revealed the downregulation of N-cadherin, Vimentin and CD44. In addition, when CD44 expression was knocked down, the EMT ability of the cells was also inhibited. This phenomenon was most pronounced when both CXCL5 and CD44 were knocked down. CXCL5 and CD44 can affect the EMT and stem cell capacity of T24-L cells through some interaction.


Subject(s)
Chemokine CXCL5/genetics , Hyaluronan Receptors/genetics , Lung Neoplasms/pathology , Urinary Bladder Neoplasms/secondary , Cadherins/physiology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/physiology , Gene Knockdown Techniques , Humans , Vimentin/physiology
13.
Ann Surg ; 276(2): 345-356, 2022 08 01.
Article in English | MEDLINE | ID: mdl-33086308

ABSTRACT

OBJECTIVES: To identify the role and mechanism of a male specific gene, SRY, in I/R-induced hepatic injury. BACKGROUND: Males are more vulnerable to I/R injury than females. However, the mechanism of these sex-based differences remains poorly defined. METHODS: Clinicopathologic data of patients who underwent hepatic resection were identified from an international multi-institutional database. Liver specific SRY TG mice were generated, and subjected to I/R insult with their littermate WT controls in vivo. In vitro experiments were performed by treating primary hepatocytes from TG and WT mice with hypoxia/reoxygen-ation stimulation. RESULTS: Clinical data showed that postoperative aminotransferase level, incidence of overall morbidity and liver failure were markedly higher among 1267 male versus 508 female patients who underwent hepatic resection. SRY was dramatically upregulated during hepatic I/R injury. Overexpression of SRY in male TG mice and ectopic expression of SRY in female TG mice exacerbated liver I/R injury compared with WTs as manifested by increased inflammatory reaction, oxidative stress and cell death in vivo and in vitro. Mechanistically, SRY interacts with Glycogen synthase kinase-3ß (GSK-3ß) and ß-catenin, and promotes phosphorylation and degradation of ß-catenin, leading to suppression of the downstream FOXOs, and activation of NF-κBand TLR4 signaling. Furthermore, activation of ß-catenin almost completely reversed the SRYoverexpression-mediated exacerbation of hepatic I/R damage. CONCLUSIONS: SRY is a novel hepatic I/R mediator that promotes hepatic inflammatory reaction, oxidative stress and cell necrosis via inhibiting Wnt/ß-catenin signaling, which accounts for the sex-based disparity in hepatic I/R injuries.


Subject(s)
Liver Diseases , Reperfusion Injury , Sex-Determining Region Y Protein/metabolism , Animals , Apoptosis , Female , Glycogen Synthase Kinase 3 beta/metabolism , Ischemia , Liver/pathology , Liver Diseases/metabolism , Male , Mice , Sex Characteristics , beta Catenin
14.
Ann Vasc Surg ; 81: 240-248, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34748950

ABSTRACT

OBJECTIVE: To determine the risk for pulmonary embolism (PE) and explore the relationship between the site of thrombosis and PE in patients with acute lower extremity deep vein thrombosis (DVT). METHODS: A total of 1585 hospitalized patients first diagnosed with acute lower extremity DVT were investigated retrospectively. The patients were divided into two groups: the non-PE group (Group 1) and the PE group (Group 2). Then, Group 2 was divided into two subgroups: asymptomatic pulmonary embolism (asPE, Group 2a) and symptomatic pulmonary embolism (sPE, Group 2b). Kaplan-Meier curves and logistic regression analysis were used to explore the relevant risk factors for PE. RESULTS: Among 1585 patients, 458 patients suffered from PE, accounting for 28.9%. 102 (22.3%) of them had the typical clinical manifestations of PE and were defined as sPE, and the remaining 356 (77.7%) patients were classified as asPE. Patients with proximal lower extremity DVT were significantly more predominant in the PE group than in the non-PE group (92.8% vs. 86.2%, P<0.001). Moreover, in Group 2, patients with typical PE manifestations showed a higher proportion of patients with right lower extremity DVT than left lower extremity DVT (26.7% vs. 17.7%, P = 0.035), and bilateral lower extremity DVT than unilateral DVT (44.1% vs. 20.5%, P<0.001). By multivariate analysis, alcohol consumption (OR, 1.824; 95% CI, 1.194-2.787; P = 0.005), heart failure (OR, 2.345; 95% CI, 1.560-3.526; P<0.001), proximal DVT (OR, 2.096; 95% CI,1.407-3.123; P<0.001) were independent risk factors for PE. CONCLUSIONS: Patients with proximal acute lower extremity DVT were more likely to suffer from PE than those with distal DVT. Patients with right acute lower extremity DVT had a higher risk of sPE than patients with left acute lower extremity DVT. Alcohol consumption and heart failure were associated with the occurrence of PE in patients with acute lower extremity DVT.


Subject(s)
Pulmonary Embolism , Venous Thrombosis , Humans , Lower Extremity/blood supply , Pulmonary Embolism/complications , Pulmonary Embolism/diagnosis , Pulmonary Embolism/epidemiology , Retrospective Studies , Risk Factors , Treatment Outcome , Venous Thrombosis/complications , Venous Thrombosis/epidemiology
15.
ACS Sens ; 6(12): 4369-4378, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34878766

ABSTRACT

Histone methylations play a crucial role in chromatin remodeling and genome regulations. However, there is a lack of tools to visualize these histone modifications with high spatiotemporal resolutions in live cells. We have developed a biosensor based on fluorescence resonance energy transfer (FRET) and incorporated it into nucleosomes, capable of monitoring the trimethylation of H3K27 (H3K27me3) in live cells. We also revealed that the performance of the FRET biosensor can be significantly improved by adjusting the linkers within the biosensor. An improved biosensor enables the live-cell imaging of different histone methylation status, induced by the suppressive H3.3K27M or existing in breast cancer cells with varying genetic backgrounds. We have further applied the biosensor to reveal the dynamic coupling between H3K27me3 changes and caspase activity representing the initiation of apoptosis in cancer cells by imaging both H3K27me3 and caspase activity simultaneously in the same live cells. Thus, this new FRET biosensor can provide a powerful tool to visualize the epigenetic regulation in live cells with high spatial temporal resolutions.


Subject(s)
Histones , Neoplasms , Epigenesis, Genetic , Fluorescence Resonance Energy Transfer , Genome , Histones/genetics , Histones/metabolism , Methylation
16.
Stem Cell Res Ther ; 12(1): 497, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34503551

ABSTRACT

BACKGROUND: Adipose-derived mesenchymal stem cells (ADSC)-based therapy is an outstanding treatment strategy for ischaemic disease. However, the therapeutic efficacy of this strategy is not ideal due to the poor paracrine function and low survival rate of ADSCs in target regions. Platelet extracellular vesicles (PEVs) are nanoparticles derived from activated platelets that can participate in communication between cells. Accumulating evidence indicates that PEVs can regulate the biological functions of several cell lines. In the present study, we aimed to investigate whether PEVs can modulate the proangiogenic potential of ADSCs in vitro and in vivo. METHODS: PEVs were identified using scanning electron microscope (SEM), flow cytometry (FCM) and nanoparticle tracking analysis (NTA). The CCK8 assay was performed to detect proliferation of cells. Transwell and wound healing assays were performed to verify migration capacity of cells. AnnexinV-FITC/PI apoptosis kit and live/dead assay were performed to assess ADSCs apoptosis under Cocl2-induced hypoxia condition. The underlying mechanisms by which PEVs affected ADSCs were explored using real time-PCR(RT-PCR) and Western blot. In addition, matrigel plug assays were conducted and mouse hindlimb ischaemic models were established to investigate the proangiogenic potential of PEV-treated ADSCs in vivo. RESULTS: We demonstrated that ADSC could internalize PEVs, which lead to a series of biological reactions. In vitro, dose-dependent effects of PEVs on ADSC proliferation, migration and antiapoptotic capacity were observed. Western blotting results suggested that multiple proteins such as ERK, AKT, FAK, Src and PLCγ1 kinase may contribute to these changes. Furthermore, PEVs induced upregulation of several growth factors expression in ADSCs and amplified the proliferation, migration and tube formation of HUVECs induced by ADSC conditioned medium (CM). In in vivo experiments, compared with control ADSCs, the injection of PEV-treated ADSCs resulted in more vascularization in matrigel plugs, attenuated tissue degeneration and increased blood flow and capillary density in ischaemic hindlimb tissues. CONCLUSION: Our data demonstrated that PEVs could enhance the proangiogenic potential of ADSCs in mouse hindlimb ischaemia. The major mechanisms of this effect included the promotion of ADSC proliferation, migration, anti-apoptosis ability and paracrine secretion.


Subject(s)
Blood Platelets , Extracellular Vesicles , Adipocytes , Adipose Tissue , Animals , Cell Proliferation , Mice , Stem Cells
17.
Nat Commun ; 12(1): 5031, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413312

ABSTRACT

The limited sensitivity of Förster Resonance Energy Transfer (FRET) biosensors hinders their broader applications. Here, we develop an approach integrating high-throughput FRET sorting and next-generation sequencing (FRET-Seq) to identify sensitive biosensors with varying substrate sequences from large-scale libraries directly in mammalian cells, utilizing the design of self-activating FRET (saFRET) biosensor. The resulting biosensors of Fyn and ZAP70 kinases exhibit enhanced performance and enable the dynamic imaging of T-cell activation mediated by T cell receptor (TCR) or chimeric antigen receptor (CAR), revealing a highly organized ZAP70 subcellular activity pattern upon TCR but not CAR engagement. The ZAP70 biosensor elucidates the role of immunoreceptor tyrosine-based activation motif (ITAM) in affecting ZAP70 activation to regulate CAR functions. A saFRET biosensor-based high-throughput drug screening (saFRET-HTDS) assay further enables the identification of an FDA-approved cancer drug, Sunitinib, that can be repurposed to inhibit ZAP70 activity and autoimmune-disease-related T-cell activation.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , High-Throughput Nucleotide Sequencing/methods , Phosphotransferases/metabolism , Cells, Cultured , Humans , Protein Engineering/methods , Proto-Oncogene Proteins c-fyn/metabolism , T-Lymphocytes/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism
18.
Clin Appl Thromb Hemost ; 27: 10760296211025618, 2021.
Article in English | MEDLINE | ID: mdl-34235952

ABSTRACT

To investigate serum neutrophil gelatinase-associated lipocalin (sNGAL) and urine neutrophil gelatinase-associated lipocalin (uNGAL) as early predictors of contrast-associated acute kidney injury(contrast-induced nephropathy)following endovascular aortic repair for abdominal aortic aneurysm. Prospective cohort study. Subjects included 202 consecutive patients with abdominal aortic aneurysm diagnosed between February 2016 and October 2018. We divided the patients into 2 groups: contrast-induced nephropathy (CIN) (n = 26) and non-CIN (n = 176). We assessed correlations between sNGAL and uNGAL concentrations and standard renal markers at baseline, 6, 24, and 48 hours post-procedure. We constructed conventional receiver operating characteristic (ROC) curves and calculated the area under the curve to assess SCr, eGFR, sNGAL, and uNGAL performance. We derived biomarker cutoff levels from ROC analysis results to maximize sensitivity and specificity values. The CIN incidence within our cohort was 12.9%. sNGAL levels correlated significantly with SCr and eGFR at baseline, 6, and 24 hours post-contrast medium exposure. Similarly, uNGAL levels correlated with SCr and estimated glomerular filtration rate (eGFR) at baseline, 6, and 24 hours post-exposure. sNGAL and uNGAL were significantly elevated as early as 6 hours post-endotherapy in the CIN group; there were only minor changes in the non-CIN group. SCr was also significantly elevated in the CIN group, but not until 48 hours post-catheterization. Both sNGAL and uNGAL may be more accurate than SCr and eGFR as early biomarkers of CIN in patients with abdominal aortic aneurysm undergoing endovascular therapy.


Subject(s)
Aorta/surgery , Aortic Aneurysm, Abdominal/etiology , Contrast Media/adverse effects , Endovascular Procedures/methods , Glomerulonephritis, Membranous/chemically induced , Lipocalin-2/metabolism , Aortic Aneurysm, Abdominal/pathology , Female , Humans , Male , Middle Aged
19.
Cancer Lett ; 513: 14-25, 2021 08 10.
Article in English | MEDLINE | ID: mdl-33992711

ABSTRACT

Immune checkpoint blockade is considered a breakthrough in cancer treatment. However, with the low response rates and therapeutic resistance of patients with hepatocellular carcinoma (HCC), the challenges facing the application of this treatment are tremendous. Liver fibrosis is a key driver of tumor immune escape, the underlying mechanism has never been clarified. This study sought to explore the role of liver fibrosis in regulating tumor-infiltrating lymphocytes (TILs) and inducing tumor immunosuppression. Ninety-nine fixed HCC tissue samples were used to analyze the association between liver fibrosis and immune escape using immunohistochemistry. In HCC patients, low FIB-4 values and high CD8+ T cell infiltration were correlated with prolonged survival. Elevated expression of immune checkpoints and attenuated antitumor immunity were observed in CCl4-induced mice liver fibrosis models and human fibrotic livers compared to control group. GOLM1 levels were increased in livers of patients with fibrosis and mice in response to CCl4-induced liver fibrosis. CD8+ T cell infiltrations were significantly decreased and PD-L1 expression was significantly increased in tumor tissues from hepatocyte-specific GOLM1 transgenic mice (Alb/GOLM1 mice) inducing chemical carcinogenesis compared to their corresponding control WT mice. GOLM1 induced PD-L1 expression via EGFR pathway activation. EGFR inhibitors, especially together with anti-PD-L1 therapy, improved the efficacy of immunotherapy in HCC. These findings illustrate the importance of liver fibrosis-induced immunosuppression as a tumor-promoting mechanism. GOLM1, which is highly upregulated in the fibrotic liver, regulates tumor microenvironmental immune escape via the EGFR/PD-L1 signaling pathway. EGFR blockade may bolster the efficacy of immune checkpoint inhibitors for HCC treatment.


Subject(s)
B7-H1 Antigen/immunology , Carcinoma, Hepatocellular/immunology , Liver Cirrhosis/immunology , Liver Neoplasms/immunology , Membrane Proteins/immunology , Animals , B7-H1 Antigen/biosynthesis , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , Tumor Escape , Tumor Microenvironment , Up-Regulation
20.
J Vasc Surg Venous Lymphat Disord ; 9(6): 1535-1544, 2021 11.
Article in English | MEDLINE | ID: mdl-33482378

ABSTRACT

OBJECTIVE: The vital pathogenesis of varicose veins includes remodeling of the extracellular matrix and decreased vascular tone. Prostaglandin E2 (PGE2), a small molecule substance and inflammatory medium that belongs to the arachidonic acid derivatives, has the capacity to influence the expression of metalloproteinase and the vascular tone of the venous wall. The purpose of the present study was to investigate the role of PGE2 in the development of varicose veins in lower limbs. METHODS: The collected venous specimens were analyzed using hematoxylin and eosin, Masson's trichrome, and immunohistochemical staining. Transforming growth factor (TGF)-ß1, PGE2, CD31, and α-smooth muscle actin antibody were used to detect the expression and distribution of these proteins. The effect of PGE2 on the proliferation, migration, and tube formation capacity of human umbilical vein endothelial cells (HUVECs) was detected in vitro. The effect of TGF-ß1 on the expression of PGE2 and matrix metalloproteinases (MMPs) was assessed using Western blotting. Quantitative reverse transcription polymerase chain reaction was used to evaluate the effect of PGE2 on the expression of nitric oxide synthase (NOS) and other genes. RESULTS: The expression of PGE2 and TGF-ß1 in varicose veins was upregulated in the media tunica and intima tunica, and a strong positive correlation was found between PGE2 and TGF-ß1 expression in both varicose veins (95% confidence interval, 0.5207-0.9582; R = 0.848; P = .0005) and normal veins (95% confidence interval, 0.2530-0.8532; R = 0.643; P = .003). PGE2 promoted the migration and tube formation ability of HUVECs. Moreover, PGE2 also upregulated the expression of MMP-1 and TGF-ß1 in HUVECs and increased the mRNA level of inducible NOS. CONCLUSIONS: PGE2 can affect the remodeling of the extracellular matrix and reduce the elasticity of the vascular walls by promoting the synthesis of TGF-ß1 and MMP-1. PGE2 can also reduce the tension of the great saphenous vein by promoting the expression of inducible NOS, thus aggravating the blood stasis.


Subject(s)
Dinoprostone/physiology , Lower Extremity/blood supply , Nitric Oxide Synthase Type II/physiology , Transforming Growth Factor beta1/physiology , Varicose Veins/etiology , Cohort Studies , Disease Progression , Female , Humans , Male , Middle Aged , Retrospective Studies , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...