Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Insects ; 15(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786899

ABSTRACT

The purpose of this experiment was to evaluate the effects of different levels of BSF on rumen in vitro fermentation gas production, methane (CH4) production, ammonia nitrogen (NH3-N), and volatile fatty acids (VFAs). The experiment comprised four treatments, each with five replicates. The control group contained no BSF (BSF0), and the treatment groups contained 5% (BSF5), 10% (BSF10), and 15% (BSF15) BSF, respectively. Results showed that at 3 h, 9 h, and 24 h, gas production in BSF5 and BSF10 was significantly higher than in BSF0 and BSF15 (p < 0.05). Gas production in BSF5 and BSF10 was higher than in BSF0, while gas production in BSF15 was lower than in BSF0. At 6 h and 12 h, CH4 emission in BSF15 was significantly lower than in the other three groups (p < 0.05). There were no differences in the pH of in vitro fermentation after BSF addition (p > 0.05). At 3 h, NH3-N levels in BSF10 and BSF15 were significantly higher than in BSF0 and BSF5 (p < 0.05). At 6 h, NH3-N levels in BSF5 and BSF10 were significantly higher than in BSF0 and BSF15 (p < 0.05). Acetic acid, propionic acid, butyric acid, and total VFAs in BSF0, BSF5, and BSF10 were significantly higher than in BSF15 (p < 0.05). In conclusion, gas production, CH4 emission, NH3-N, acetic acid, propionic acid, butyric acid, and VFAs were highest in BSF5 and BSF10 and lowest in BSF15.

2.
Front Vet Sci ; 11: 1364589, 2024.
Article in English | MEDLINE | ID: mdl-38562916

ABSTRACT

Lycopene is a kind of natural carotenoid that could achieve antioxidant, anti-cancer, lipid-lowering and immune-improving effects by up-regulating or down-regulating genes related to antioxidant, anti-cancer, lipid-lowering and immunity. Furthermore, lycopene is natural, pollution-free, and has no toxic side effects. The application of lycopene in animal production has shown that it could improve livestock production performance, slaughter performance, immunity, antioxidant capacity, intestinal health, and meat quality. Therefore, lycopene as a new type of feed additive, has broader application prospects in many antibiotic-forbidden environments. This article serves as a reference for the use of lycopene as a health feed additive in animal production by going over its physical and chemical characteristics, antioxidant, lipid-lowering, anti-cancer, and application in animal production.

3.
Environ Sci Pollut Res Int ; 31(17): 26170-26181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38498134

ABSTRACT

The wet flue gas desulfurization (WFGD) system of coal-fired power plants shows a good removal effect on condensable particulate matter (CPM), reducing the dust removal pressure for the downstream flue gas purification devices. In this work, the removal effect of a WFGD system on CPM and its organic pollutants from a coal-fired power plant was studied. By analyzing the organic components of the by-products emitted from the desulfurization tower, the migration characteristics of organic pollutants in gas, liquid, and solid phases, as well as the impact of desulfurization towers on organic pollutants in CPM, were discussed. Results show that more CPM in the flue gas was generated by coal-fired units at ultra-low load, and the WFGD system had a removal efficiency nearly 8% higher than that at full load. The WFGD system had significant removal effect on two typical esters, especially phthalate esters (PAEs), with the highest removal efficiency of 49.56%. In addition, the WFGD system was better at removing these two esters when the unit was operating at full load. However, it had a negative effect on n-alkanes, which increased the concentration of n-alkanes by 8.91 to 19.72%. Furthermore, it is concluded that the concentration distribution of the same type of organic pollutants in desulfurization wastewater was similar to that in desulfurization slurry, but quite different from that in coal-fired flue gas. The exchange of three organic pollutants between flue gas and desulfurization slurry was not significant, while the concentration distribution of organic matters in gypsum was affected by coal-fired flue gas.


Subject(s)
Air Pollutants , Environmental Pollutants , Particulate Matter/analysis , Air Pollutants/analysis , Gases , Power Plants , Coal , Alkanes
4.
Sci Total Environ ; 921: 170911, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38354796

ABSTRACT

Elucidation of the catalytic decomposition mechanism of dioxins is pivotal in developing highly efficient dioxin degradation catalysts. In order to accurately simulate the whole molecular structure of dioxins, two model compounds, o-dichlorobenzene (o-DCB) and furan, were employed to represent the chlorinated benzene ring and oxygenated central ring within a dioxin molecule, respectively. Experiments and Density Functional Theory (DFT) calculations were combined to investigate the adsorption as well as oxidation of o-DCB and furan over MnOx-CeO2/TiO2 catalyst (denoted as MnCe/Ti). The results indicate that competitive adsorption exists between furan and o-DCB. The former exhibits superior adsorption capacity on MnCe/Ti catalyst at 100 °C - 150 °C, for it can adsorb on both surface metal atom and surface oxygen vacancies (Ov) via its O-terminal; while the latter adsorbs primarily by anchoring its Cl atom to surface Ov. Regarding oxidation, furan can be completely oxidized at 150 °C - 300 °C with a high CO2 selectivity (above 80 %). However, o-DCB cannot be totally oxidized and the resulting intermediates cause the deactivation of catalyst. Interestingly, the pre-adsorption of furan on catalyst surface can facilitate the catalytic oxidation of o-DCB below 200 °C, possibly because the dissociated adsorption of furan may form additional reactive oxygen species on catalyst surface. Therefore, this work provides new insights into the catalytic decomposition mechanism of dioxins as well as the optimization strategies for developing dioxin-degradation catalysts with high efficiency at low temperature.

5.
Environ Res ; 242: 117799, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38042521

ABSTRACT

The use of municipal solid waste incineration fly ash, commonly referred to as "fly ash", as a supplementary cementitious material (SCM), has been explored to mitigate the CO2 emissions resulting from cement production. Nevertheless, the incorporation of fly ash as an SCM in mortar has been shown to weaken its compressive strength and increase the risk of heavy metal leaching. In light of these challenges, this study aims to comprehensively evaluate the influence of CO2 pressure, temperature, and residual water/binder ratio on the CO2 uptake and compressive strength of mortar when combined with fly ash. Additionally, this study systematically examines the feasibility of mechanochemical pretreatment, which enhances the homogenization of fly ash and augments the density of the mortar's microstructure. The results indicate that the use of mechanochemical pretreatment leads to a notable 43.6% increase in 28-day compressive strength and diminishes the leaching of As, Ba, Ni, Pb, Se, and Zn by 17.9-77.8%. Finally, a reaction kinetics model is proposed to elucidate the CO2 sequestration process under varying conditions. These findings offer valuable guidance for incorporating fly ash as an SCM and CO2 sequestrator in mortar.


Subject(s)
Metals, Heavy , Refuse Disposal , Solid Waste/analysis , Coal Ash , Carbon Dioxide , Incineration , Metals, Heavy/analysis , Carbon , Refuse Disposal/methods , Particulate Matter
6.
Sci Total Environ ; 912: 169482, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38135065

ABSTRACT

The process of urbanization has resulted in a continuous growth of the production of municipal solid waste, consequently leading to the increase of municipal solid waste incineration fly ash (MSWI FA) over time. This has prompted the need for effective disposal and value-added utilization strategies for MSWI FA. In this study, a hydrothermal method was employed to synthesize CaAl layered double hydroxides (LDHs) using MSWI FA as the raw material. The main objective was to investigate how different synthesis parameters affect the crystallinity of the layered bimetallic hydroxides. Subsequently, the synthesized LDHs were characterized using various techniques such as BET, SEM, XRD, FT-IR, and XPS. The results revealed the presence of calcium and aluminum cations in the interlayer region of the synthesized material, with chloride ions, sulfate ions, and acetate ions being the predominant anions. Moreover, the formation of LDHs presents an effective approach for the self-purification of leachates derived from MSWI FA. The LDHs exhibited excellent adsorption capacity for Cd2+ and Cu2+ in wastewater, with maximum values of 730 mg·g-1 and 446 mg·g-1, respectively. The adsorption mechanisms involved isomorphous substitution, complexation, as well as the precipitation of hydroxides or interlayer anions. This method presents a novel approach for effectively utilizing MSWI FA to produce environmentally friendly value-added adsorbents.

7.
Environ Sci Pollut Res Int ; 30(57): 120355-120365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37936051

ABSTRACT

Catalytic destruction of nitrogen oxides (NOx) combined with dust removal technique has attracted much attention, yet the application in the solid waste incineration air pollution control process is still lacking due to the complex flue gas atmosphere. In this work, the Mn-Ce-Co-Ox catalyst-coated polyphenylene sulfide (PPS) filter fiber with efficient dust removal and low-temperature polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) destruction has been prepared with a redox-precipitation method. The catalyst was uniformly grown around the PPS fiber with appropriate catalyst loading. The effects of several key operating parameters (e.g., reaction temperature, catalyst loading amount, and filtration velocity) on the catalytic efficiency were comprehensively investigated. The results show that the Mn-Ce-Co-Ox/PPS has a decomposition yield of 78.0% in PCDD/Fs and 96% in nitric oxide (NO) conversion at 200 °C. The poisoned catalytic filter exhibits a removal efficiency of 88.6% for PCDD/Fs. In addition, the catalytic filter can completely reject particles smaller than 1.0 µm with a low filtration resistance. Therefore, this efficient and energy-conserving catalytic filter shows promising applications in flue gas pollution treatments.


Subject(s)
Air Pollutants , Polychlorinated Dibenzodioxins , Dibenzofurans, Polychlorinated , Polychlorinated Dibenzodioxins/analysis , Dibenzofurans , Temperature , Nitric Oxide , Dust , Oxidation-Reduction , Incineration/methods
8.
Sci Total Environ ; 897: 165404, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37423291

ABSTRACT

Microplastic pollution control has always been a thorny problem all over the world. Magnetic porous carbon materials have shown a good development prospect in microplastic adsorption due to their excellent adsorption performance and easy magnetic separation from water. However, the adsorption capacity and rate of magnetic porous carbon on microplastics are still not high, and the adsorption mechanism is not fully revealed, which hinders its further development. In this study, magnetic sponge carbon was prepared using glucosamine hydrochloride as the carbon source, melamine as the foaming agent, iron nitrate and cobalt nitrate as the magnetizing agents. Among them, Fe-doped magnetic sponge carbon (FeMSC) exhibited excellent adsorption performance for microplastics due to its sponge-like morphology (fluffy), strong magnetic properties (42 emu/g) and high Fe-loading (8.37 Atomic%). FeMSC could adsorb to saturation within 10 min, and the adsorption capacity of polystyrene (PS) reached as high as 369.07 mg/g in 200 mg/L microplastic solution, which was almost the fastest adsorption rate and highest adsorption capacity reported so far in the same condition. The performance of the material against external interference was also tested. FeMSC performed well in a wide pH range and different water quality, except in the strong alkaline condition. This is because the surface of microplastics and adsorbents will have many negative charges under strong alkalinity, significantly weakening the adsorption. Furthermore, theoretical calculations were innovatively used to reveal the adsorption mechanism at the molecular level. It was found that Fe-doping could form chemisorption between PS and the adsorbent, thereby significantly increasing the adsorption energy between the adsorbent and PS. The magnetic sponge carbon prepared in this study has excellent adsorption performance for microplastics and can be easily separated from water, which is a promising microplastic adsorbent.

9.
J Environ Manage ; 344: 118611, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37453301

ABSTRACT

Polychlorinated dibenzo-p-dioxin/furans (PCDD/F) have a great threat to the environment and human health, resulting in controlling PCDD/F emissions to regulation far important for emission source. Considering 2,3,4,7,8-pentachlorodibenzo-p-furan (PeCDF) identified as the most contributor to international toxic equivalent, 2,3,4,7,8-PeCDF can be considered as the target molecule for the adsorption of PCDD/F emission from industries. With the aim to in-depth elucidate how different types of nitrogen (N) species enhance 2,3,4,7,8-PeCDF on the biochar and guide the specific carbon materials design for industries, systematic computational investigations by density functional theory calculations were conducted. The results indicate pristine biochar intrinsically interacts with 2,3,4,7,8-PeCDF by π-π electron donor and acceptor (EDA) interaction, six-membered carbon rings of PeCDF parallel to the biochar surface as the strongest adsorption configuration. Moreover, by comparison of adsorption energy (-150.16 kJ mol-1) and interaction distance (3.593 Å) of pristine biochar, environment friendly N doping can enhance the adsorption of 2,3,4,7,8-PeCDF on biochar. Compared with graphitic N doping and pyridinic N doping, pyrrolic N doping biochar presents the strongest interaction toward 2,3,4,7,8-PeCDF molecule due to the highest adsorption energy (-155.56 kJ mol-1) and shortest interaction distance (3.532 Å). Specially, the enhancing adsorption of PeCDF over N doped biochar attributes to the enhancing π-π electron EDA interaction and electrostatic interaction. In addition, the effect of N doping species on PeCDF adsorbed on the biochar is more than that of N doping content. Specially, the adsorption capacity of N doping biochar for PCDD/F can be improved by adding pyrrolic N group most efficiently. Furthermore, pyrrolic N and pyridinic N doping result in the entropy increase, and electrons transform from pyrrolic N and pyridinic N doped biochar to 2,3,4,7,8-PeCDF molecule. A complete understanding of the research would supply crucial information for applying N-doped biochar to effectively remove PCDD/F for industries.


Subject(s)
Nitrogen , Polychlorinated Dibenzodioxins , Humans , Adsorption , Carbon
10.
Environ Sci Pollut Res Int ; 30(27): 70277-70287, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37148515

ABSTRACT

Total particulate matter (TPM), including condensable and filterable particulate matter (CPM and FPM), is one of the pollutants that need to be controlled in the coal combustion process. In this study, CPM and FPM were sampled from sixteen coal-fired power units and two coal-fired industrial units. The removal effects of air pollution control devices equipped in the units on the migration and emission of particles were investigated by analyzing samples from inlets and outlets of apparatus. The average removal efficiency of TPM by dry-type dust removal equipment, wet flue gas desulfurization devices, and wet-type precipitators reached 98.57 ± 0.90%, 44.89 ± 15.01%, and 28.45 ± 7.78%, respectively. The removal efficiency of dry-type dust removal equipment and wet-type precipitators to TPM is mainly determined by the purification effect of FPM and CPM, respectively, and both types of particles contribute to the removal efficiency of desulfurization systems to total TPM. The concentrations of CPM (12.01 ± 5.64 mg/Nm3) and FPM (1.95 ± 0.86 mg/Nm3) emitted from ultra-low emission units were the lowest, and CPM is the dominant particle, especially the higher proportion of organic components in CPM.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter/analysis , Air Pollutants/analysis , Dust , Power Plants , Coal
11.
J Environ Manage ; 339: 117938, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37080097

ABSTRACT

Low-carbon and high-efficiency binder is desirable for sustainable treatment of municipal solid waste incineration fly ash (MSWI FA). In this study, CaO or MgO was used to activate ground granulated blast furnace slag (GGBS) to form calcium silicate hydrate and magnesium silica hydrate gel for stabilization/solidification of hazardous MSWI FA. Experimental results showed that potential toxic elements (PTEs), such as Pb and Zn, significantly inhibited the formation of reaction products in CaO-GGBS system due to the complexation between Ca(OH)2 and PTEs, whereas PTEs only had insignificant inhibition on transformation from MgO to Mg(OH)2 in MgO-GGBS system, resulting in lower leachabilities of PTEs and higher mechanical strengths. Stabilization/solidification experiments demonstrated that MSWI FA (70 wt%) could be recycled by MgO-GGBS binder (30 wt%) into blocks with desirable 28-day compressive strengths (3.9 MPa) and PTEs immobilization efficiencies (99.8% for Zn and 99.7% for Pb). This work provides mechanistic insights on the immobilization mechanisms of PTEs in CaO/MgO-GGBS systems and suggests a promising MgO-GGBS binder for low-carbon treatment of MSWI FA.


Subject(s)
Metals, Heavy , Refuse Disposal , Coal Ash , Refuse Disposal/methods , Particulate Matter , Carbon , Magnesium Oxide , Lead , Metals, Heavy/analysis , Incineration/methods , Solid Waste/analysis
12.
Chemosphere ; 313: 137513, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36495972

ABSTRACT

Biomass-derived porous carbon materials are potential adsorbents for VOCs. In this work, biomass-derived nitrogen-doped hierarchical porous carbons (NHPCs) were synthesized by a one-step pyrolysis activation combined with nitrogen doping method from several biomass wastes (corn straw, wheat stalk, bamboo, pine, and corncob). NHPCs have a hierarchical porous structure with micro-meso-macropores distribution, nitrogen doping, large specific surface area, and pore volume. The corncob derived carbon (NHPC-CC) has the best activation result as analyses showed that a lower ash content and higher total cellulose composition content of the biomass result in a better pore activation effect. Single and multi-component dynamic adsorption tests of typical VOCs (benzene, toluene, and chlorobenzene) were conducted on NHPCs in laboratory conditions (∼500 ppm). Promising VOC adsorption capacity and great adsorption kinetics with low mass transfer resistance were found on NHPCs. Correlation analysis showed that the high VOC adsorption capacity and great adsorption kinetics can be attributed to the large surface area of micro-mesopores and the mass transfer channels provided by meso-macropores respectively. The competitive dynamic adsorption tests revealed that the VOC with lower saturated vapor pressure has more adsorption sites on the surface of micro-mesopores and stronger adsorption force, which results in the higher adsorption capacity and desorption caused by substitution reaction in VOCs competitive adsorption process. In detail, the process of toluene and chlorobenzene competitive adsorption was described. Besides, well recyclability of NHPC-CC was revealed as the VOCs adsorption capacity reductions were less than 10% after four adsorption-desorption cycles. All studies showed that the NHPC-CC could be potential adsorbent for VOCs in industrial process.


Subject(s)
Carbon , Volatile Organic Compounds , Carbon/chemistry , Adsorption , Porosity , Biomass , Nitrogen , Toluene
13.
Environ Sci Pollut Res Int ; 30(3): 5903-5916, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35982393

ABSTRACT

Few studies focused on the emission of polychlorinated-ρ-dibenzodioxins and dibenzofurans (PCDD/F) from different kinds of waste incinerators. This study was conducted in a full-scale MSW incineration plant to investigate the influence of different incinerator types on PCDD/F. Experimental results indicated that the 2,3,7,8-PCDD/F concentration in the inlet gas of the air pollution control system (APCS) in the studied fluidized bed was higher (2.03 ng I-TEQ/Nm3) than that of the grate (0.77 ng I-TEQ/Nm3). But gas in the outlet of APCS from both incinerators had an approximate concentration, lower than the Chinese emission limit of 0.1 ng I-TEQ/Nm3. Similar distribution patterns were observed for 2,3,7,8-PCDD/Fs, as well as 136 PCDD/F congeners. Specifically, OCDD and 1,2,3,4,6,7,8-HpCDD were major isomer constituents for 2,3,7,8-PCDD/F isomers. In terms of formation pathways, a similar formation mechanism was observed based on fingerprint characteristics of 136 PCDD/F congeners. De novo synthesis was the dominating formation pathway for both incinerators. Meanwhile, DD/DF chlorination was another contributor to PCDD/F formation, which in the fluidized bed was higher. In addition, little correlation (0.009 < R2 < 0.533) between conventional pollutants (HCl, CO, PM) and PCDD/Fs was found, suggesting little high-temperature synthesis observed and verifying the dominance of de novo synthesis.


Subject(s)
Air Pollutants , Benzofurans , Polychlorinated Dibenzodioxins , Incineration , Dibenzofurans , Polychlorinated Dibenzodioxins/analysis , Air Pollutants/analysis , Benzofurans/analysis , Environmental Monitoring , Dibenzofurans, Polychlorinated/analysis
14.
Animals (Basel) ; 12(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36496814

ABSTRACT

Under the background of the current shortage of feed resources, especially the shortage of protein feed, attempts to develop and utilize new feed resources are constantly being made. If the tomato pomace (TP) produced by industrial processing is used improperly, it will not only pollute the environment, but also cause feed resources to be wasted. This review summarizes the nutritional content of TP and its use and impact in animals as an animal feed supplement. Tomato pomace is a by-product of tomato processing, divided into peel, pulp, and tomato seeds, which are rich in proteins, fats, minerals, fatty acids, and amino acids, as well as antioxidant bioactive compounds, such as lycopene, beta-carotenoids, tocopherols, polyphenols, and terpenes. There are mainly two forms of feed: drying and silage. Tomato pomace can improve animal feed intake and growth performance, increase polyunsaturated fatty acids (PUFA) and PUFA n-3 content in meat, improve meat color, nutritional value, and juiciness, enhance immunity and antioxidant capacity of animals, and improve sperm quality. Lowering the rumen pH and reducing CH4 production in ruminants promotes the fermentation of rumen microorganisms and improves economic efficiency. Using tomato pomace instead of soybean meal as a protein supplement is a research hotspot in the animal husbandry industry, and further research should focus on the processing technology of TP and its large-scale application in feed.

15.
Environ Pollut ; 314: 120261, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36155219

ABSTRACT

The control of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from the flue gas in hazardous waste incinerators (HWIs) is an intractable problem. To figure out the formation mechanism of PCDD/Fs and reduce the emission, a field study was carried out in a full-scale HWI. Ca(OH)2 & (NH4)H2PO4 or CH4N2S & (NH4)H2PO4 were injected into the quench tower, and the detailed inhibition effect on PCDD/Fs formation by the inhibitors coupled with quench tower was studied. Gas and ash samples were collected to analyze PCDD/Fs. XPS, EDS characterization and Principal component analysis were adopted to further analyze the de novo and precursors synthesis. The PCDD/Fs emissions reduced from 0.135 ng I-TEQ/Nm3 to 0.062 or 0.025 ng I-TEQ/Nm3 after the injection of Ca(OH)2 & (NH4)H2PO4 or CH4N2S & (NH4)H2PO4, respectively. The quench tower was found mainly hindering de novo synthesis by reducing reaction time. CP-route was the dominant formation pathway of PCDD/Fs in quench tower ash. Ca(OH)2 & (NH4)H2PO4 effectively inhibit precursors synthesis and reduce proportions of organic chlorine from 4.11% to 2.86%. CH4N2S & (NH4)H2PO4 show good control effects on both de novo and precursors synthesis by reducing chlorine content and inhibiting metal-catalysts. Sulfur-containing inhibitors can cooperate well with the quench tower to inhibit PCDD/Fs formation and will be effective to reduce dioxins formation in high chlorine flue gas. The results pave the way for further industrial application of inhibition to reduce PCDD/Fs emissions in the HWIs flue gas.


Subject(s)
Air Pollutants , Benzofurans , Dioxins , Polychlorinated Dibenzodioxins , Hazardous Waste/analysis , Dibenzofurans/analysis , Polychlorinated Dibenzodioxins/analysis , Dioxins/analysis , Chlorine/analysis , Air Pollutants/analysis , Benzofurans/analysis , Environmental Monitoring , Incineration/methods , Sulfur/analysis , Dibenzofurans, Polychlorinated/analysis
16.
Insects ; 13(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36135532

ABSTRACT

The rapidly growing population has increased demand for protein quantities and, following a shortage of plant-based feed protein sources and the prohibition of animal-based feed protein, has forced the search for new sources of protein. Therefore, humans have turned their attention to edible insects. Black soldier fly larvae (BSFL) (Hermetia illucens L.) are rich in nutrients such as fat, protein and high-quality amino acids and minerals, making them a good source of protein. Furthermore, BSFL are easily reared and propagated on any nutrient substrate such as plant residues, animal manure and waste, food scraps, agricultural byproducts, or straw. Although BSFL cannot completely replace soybean meal in poultry diets, supplementation of less than 20% has no negative impact on chicken growth performance, biochemical indicators and meat quality. In pig studies, although BSFL supplementation did not have any negative effect on growth performance and meat quality, the feed conversion ratio (FCR) was reduced. There is obviously less research on the feeding of BSFL in pigs than in poultry, particularly in relation to weaning piglets and fattening pigs; further research is needed on the supplementation level of sows. Moreover, it has not been found that BSFL are used in ruminants, and the next phase of research could therefore study them. The use of BSFL in animal feed presents some challenges in terms of cost, availability and legal and consumer acceptance. However, this should be considered in the context of the current shortage of protein feed and the nutritional value of BSFL, which has important research significance in animal production.

17.
Mikrochim Acta ; 189(8): 275, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35829782

ABSTRACT

Gold nanoparticles (AuNPs) and their composites have been applied in surface-enhanced Raman scattering (SERS) detection methods, owing to their stable and excellent surface plasmon resonance. Unfortunately, methods for synthesizing AuNPs often require harsh conditions and complicated external steps. Additionally, removing residual surfactants or unreacted reductants is critical for improving the sensitivity of SERS detection, especially when employing AuNPs-assembled multidimensional substrates. In this study, we propose a simple and green method for AuNPs synthesis via photoreduction, which does not require external surfactant additives or stabilizers. All the processes were completed within 20 min. Along this way, only methanol was employed as the electron acceptor. Based on this photoreduction synthesis strategy, AuNPs can be directly and circularly assembled in situ in multidimensional substrates for SERS detection. The removal of residual methanol was easy because of its low boiling point. This strategy was employed for the preparation of three different dimensional SERS substrates: filter paper@AuNPs, g-C3N4@AuNPs, and MIL-101(Cr)@AuNPs. The limit of detection of filter paper@AuNPs for thiabendazole SERS detection was 1.0 × 10-7 mol/L, while the limits of detection of g-C3N4@AuNPs and MIL-101(Cr)@AuNPs for malachite green SERS detection were both 5.0 × 10-11 mol/L. This strategy presents potential in AuNP doping materials and SERS detection.


Subject(s)
Gold , Metal Nanoparticles , Methanol , Spectrum Analysis, Raman/methods , Surface Plasmon Resonance
18.
iScience ; 25(5): 104321, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35602951

ABSTRACT

This review discusses physical, chemical, and direct lithium-ion battery recycling methods to have an outlook on future recovery routes. Physical and chemical processes are employed to treat cathode active materials which are the greatest cost contributor in the production of lithium batteries. Direct recycling processes maintain the original chemical structure and process value of battery materials by recovering and reusing them directly. Mechanical separation is essential to liberate cathode materials that are concentrated in the finer size region. However, currently, the cathode active materials are being concentrated at a cut point that is considerably greater than the actual size found in spent batteries. Effective physical methods reduce the cost of subsequent chemical treatment and thereafter re-lithiation successfully reintroduces lithium into spent cathodes. Some of the current challenges are the difficulty in controlling impurities in recovered products and ensuring that the entire recycling process is more sustainable.

19.
Chemosphere ; 294: 133668, 2022 May.
Article in English | MEDLINE | ID: mdl-35063556

ABSTRACT

Wet flue gas desulfurization (WFGD) in coal-fired power plants has a great impact on the emission of particulate matter, including filterable particulate matter (FPM) and condensable particulate matter (CPM). In this paper, CPM and FPM in flue gas before and after WFGD in coal-fired power plants were sampled in parallel. FPM was tested according to ISO standard 23210-2009, and CPM was tested according to U.S. EPA Method 202. A method for quantitatively analyzing fatty acid methyl esters in CPM was established, and the removal capacity of fatty acid methyl esters and phthalate esters by WFGD in a typical coal-fired unit was compared. Results show that WFGD has a significant effect on particle size distribution, concentration, and chemical composition. WFGD has a high removal efficiency of inorganic components in CPM, up to 54.74%. CPM contains a variety of organic compounds, including hydrocarbons, esters, siloxanes, halogenated hydrocarbons, and so on. In particular, esters are an important component in CPM, whose concentration tends to decrease after WFGD. Furthermore, a total of 11 fatty acid methyl esters and 5 phthalate esters were detected in CPM before and after WFGD. Noted that fatty acid methyl esters account for 13.38% of CPM, which make a higher contribution to the concentration of particulate matter than phthalate esters, while WFGD has a stronger control effect on the removal of phthalates.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Coal/analysis , Gases , Particulate Matter/analysis , Power Plants
20.
Environ Sci Pollut Res Int ; 29(19): 29117-29129, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34997509

ABSTRACT

The coal combustion produces a large amount of pollutants such as organic compounds pollutants (such as VOCs, SVOCs) and conventional pollutants (such as SO2, NOx) which need to be controlled in coal-fired plants. Currently, there have been mature emission control technologies for conventional pollutants in coal-combustion flue gas. The complicated conditions of flue gas will have great effects on the property of VOCs adsorbents. Thus, high-quality adsorbents with great adsorption properties and selectivity of VOCs are urgently needed. In this work, a biomass-derived hierarchical porous carbon (HPC-A) with high adsorption capacity (585 mg/g) and great selectivity of toluene was proposed. Analyses through the competitive adsorption tests between toluene and SO2 indicated that the pore size distributions of adsorbents dominate the adsorption capacity and selectivity. The ultramicropores (< 0.7 nm) determine the SO2 adsorption capacity and promote the SO2 adsorption selectivity, while the micropores of 0.7 ~ 2 nm and mesopores are beneficial for toluene adsorption. Intriguingly, the SO2 molecules can promote the toluene adsorption kinetics on hierarchical porous carbons through occupying ultramicropores when competitive adsorption. Besides, we indicated the mechanism of adsorption capacity, selectivity, and kinetics of toluene and SO2, and great reusability of HPC-A was found through toluene cyclic adsorption tests. The HPC-A could be a potential adsorbent for VOCs removal from coal-combustion flue gas.


Subject(s)
Environmental Pollutants , Toluene , Adsorption , Carbon , Coal , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...