Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Discov ; 8(1): 202, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35422485

ABSTRACT

Recent evidence indicates that exosomes derived from mesenchymal stem cells (MSCs) confer protective effects against myocardial ischemia/reperfusion (I/R) injury. Exosomes are carriers of potentially protective endogenous molecules, including microRNAs (miRNAs/miRs). The current study set out to test the effects of transferring miR-182-5p from MSC-derived exosomes into myocardial cells on myocardial I/R injury. First, an I/R mouse model was developed by left anterior descending coronary artery occlusion, and myocardial cells were exposed to hypoxia/reoxygenation (H/R) for in vitro I/R model establishment. Loss- and gain-of-function experiments of miR-182-5p and GSDMD were conducted to explore the effects of miR-182-5p via MSC-derived exosomes on cell pyroptosis and viability. GSDMD was robustly expressed in I/R-injured myocardial tissues and H/R-exposed myocardial cells. GSDMD upregulation promoted H/R-induced myocardial cell pyroptosis and reduced viability, corresponding to increased lactate dehydrogenase release, reactive oxygen species production, and pyroptosis. A luciferase assay demonstrated GSDMD as a target of miR-182-5p. In addition, exosomal miR-182-5p was found to diminish GSDMD-dependent cell pyroptosis and inflammation induced by H/R. Furthermore, MSC-derived exosomes carrying miR-182-5p improved cardiac function and reduced myocardial infarction, accompanied with reduced inflammation and cell pyroptosis in vivo. Taken together, our findings suggest a cardioprotective effect of exosomal miR-182-5p against myocardial I/R injury, shedding light on an attractive therapeutic strategy.

2.
J Appl Toxicol ; 41(5): 775-788, 2021 05.
Article in English | MEDLINE | ID: mdl-33205412

ABSTRACT

Cadmium (Cd) is an occupational and environmental heavy metal pollutant derived from many sources that is linked to endothelial homeostasis. The endothelium is an important site of Cd deposition, while increasing evidence has revealed there is a close relationship between endothelial dysfunction and abnormal lipid metabolism. However, the effects of the alterations in lipid metabolism on endothelial cells (ECs) after Cd exposure still remain unclear. In our study, human microvascular endothelial cells (HMEC-1) were exposed to 40-µM Cd for 6, 12, or 24 h or 10-, 20-, or 40-µM Cd for 24 h, respectively. The Cd exposure accelerated the decomposition of triglyceride (TG) and resulted in the accumulation of free fatty acids (FFAs). These changes stimulated cytotoxicity, impaired fatty acid oxidation (FAO), induced reactive oxygen species (ROS) generation, altered the mitochondrial membrane potential (MMP), and decreased the ATP content, which eventually led to endothelial dysfunction and cell death. In summary, exposure to cadmium caused endothelial dysfunction by disrupting lipid metabolism in HMEC-1. These changes were mainly due to FFA accumulation and FAO inhibition, which further induced ROS generation and mitochondrial dysfunction. Moreover, our results provide novel insight into understanding the alterations of lipid metabolism induced by Cd exposure in ECs.


Subject(s)
Cadmium/toxicity , Endothelial Cells/drug effects , Environmental Pollutants/toxicity , Lipid Metabolism/drug effects , Animals , Endothelium/metabolism , Environmental Pollutants/metabolism , Humans , Membrane Potential, Mitochondrial , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Triglycerides/metabolism
3.
Life Sci ; 233: 116631, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31278945

ABSTRACT

AIMS: Prior to reperfusion, Calpains remain inactive due to the acidic pH and elevated ionic strength in the ischemic myocardium; but Calpain is activated during myocardial reperfusion. The underlying mechanism of Calpain activation in the ischemia-reperfusion (I/R) is yet to be determined. Therefore, the present study aims to investigate the mechanism of Calpain in I/R-induced mice. MAIN METHODS: In order to detect the function of Calpain and the NLRP3/ASC/Caspase-1 axis in cardiomyocyte pyroptosis, endoplasmic reticulum (ER) stress and myocardial function, the cardiomyocytes were treated with hypoxia-reoxygenation (H/R), and NLRP3 were silenced, Calpain was overexpressed and Caspase-1 inhibitors were used to determine cardiomyocyte pyroptosis. The results obtained from the cell experiments were then verified with an animal experiment in I/R mice. KEY FINDINGS: There was an overexpression in Calpain, ASC, NLRP3, GRP78 and C/EBP homologous protein (CHOP) in cardiomyocytes following H/R. A significant increase was witnessed in lactic acid dehydrogenase (LDH) activity, cardiomyocyte pyroptosis rate, Calpain activity, reactive oxygen species (ROS) concentration, as well as activation of ER stress in cardiomyocytes after H/R. However, opposing results were observed in H/R cardiomyocytes that received siRNA Calpain, siRNA NLRP3 or Caspase-1 inhibitor treatment. Overall, the results obtained from the animal experiment were consistent with the results from the cell experiment. SIGNIFICANCE: The silencing of Calpain suppresses the activation of the NLRP3/ASC/Caspase-1 axis, thus inhibiting ER stress in mice and improving myocardial dysfunction induced by I/R, providing a novel therapeutic pathway for I/R.


Subject(s)
Amino Acid Transport System y+/antagonists & inhibitors , Calpain/antagonists & inhibitors , Caspase 1/chemistry , Endoplasmic Reticulum Stress , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Animals , Calpain/genetics , Calpain/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Inflammasomes , Male , Mice , Mice, Inbred C57BL , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Small Interfering/genetics
4.
Int Immunopharmacol ; 69: 289-298, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30753968

ABSTRACT

The timely resolution of pulmonary inflammation coordinated by endogenous pro-resolving mediators helps limit lung tissue injury, but few endogenous pro-resolving mediators that are normally operative during acute inflammation. The protective effects of BML-111 (5(S)-6(R)-7-trihydroxyheptanoic acid methyl ester), a potent commercially available anti-inflammatory and pro-resolving mediator, on ventilation-induced lung injury (VILI) have been extensively studied, but its characteristics as a pro-resolving mediator have not. Here, anesthetized Sprague-Dawley rats were ventilated with a high tidal volume (20 mL/kg, HVT) for 1 h and randomly allocated to recover for 6, 12, 24, 48, 72, 96 or 168 h; BML-111 was administered at the peak of inflammation to evaluate its pro-resolving effect on VILI. The one-hour HVT induced a maximal pulmonary inflammatory response at 12 h that was largely resolved by 72 h. BML-111 largely resolved the maximal inflammatory response at 48 h; the resolution interval (Ri) was shortened by 26 h. Similarly, HVT elicited a time course of changes in histopathology and pulmonary edema, and BML-111 alleviates these changes. Mechanistically, neutrophil apoptosis was significantly increased in BML-111-treated rats subjected to HVT. The apoptosis inhibitor z-VAD-fmk partially reversed the proapoptotic actions of BML-111 on neutrophil and the resolving effects of BML-111 on VILI but had no effect alone. Importantly, the HVT treatment activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) and NF-κB signaling pathways in the lung tissue, and BML-111 further induced Nrf2 and HO-1 expression but inhibited the NF-κB pathway. Intriguingly, when we inhibited the Nrf2/HO-1 pathway with the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX), Nrf2 expression was further increased, but the inhibitory effects of BML-111 on the NF-κB pathway and on the subsequent inflammatory response, and the proapoptotic actions on neutrophil were reversed. The results suggest that BML-111 promotes the resolution of HVT-induced inflammation to mitigate VILI in rats, perhaps by modulating the Nrf2/HO-1 and NF-κB pathways and subsequently increasing neutrophil apoptosis.


Subject(s)
Heptanoic Acids/therapeutic use , Inflammation/drug therapy , Lung/drug effects , Neutrophils/pathology , Ventilator-Induced Lung Injury/drug therapy , Animals , Apoptosis , Cells, Cultured , Disease Models, Animal , Heme Oxygenase-1/metabolism , Humans , Lung/pathology , Male , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Protoporphyrins/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...