Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673192

ABSTRACT

The toughness of silk naturally obtained from spiders and silkworms exceeds that of all other natural and man-made fibers. These insects transform aqueous protein feedstocks into mechanically specialized materials, which represents an engineering phenomenon that has developed over millions of years of natural evolution. Silkworms have become a new research hotspot due to the difficulties in collecting spider silk and other challenges. According to continuous research on the natural spinning process of the silkworm, it is possible to divide the main aspects of bionic spinning into two main segments: the solvent and behavior. This work focuses on the various methods currently used for the spinning of artificial silk fibers to replicate natural silk fibers, providing new insights based on changes in the fiber properties and production processes over time.

2.
Molecules ; 28(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37959830

ABSTRACT

As an emerging technology, microneedles offer advantages such as painless administration, good biocompatibility, and ease of self-administration, so as to effectively treat various diseases, such as diabetes, wound repair, tumor treatment and so on. How to regulate the release behavior of loaded drugs in polymer microneedles is the core element of transdermal drug delivery. As an emerging on-demand drug-delivery technology, intelligent responsive microneedles can achieve local accurate release of drugs according to external stimuli or internal physiological environment changes. This review focuses on the research efforts in smart responsive polymer microneedles at home and abroad in recent years. It summarizes the response mechanisms based on various stimuli and their respective application scenarios. Utilizing innovative, responsive microneedle systems offers a convenient and precise targeted drug delivery method, holding significant research implications in transdermal drug administration. Safety and efficacy will remain the key areas of continuous efforts for research scholars in the future.


Subject(s)
Skin , Stimuli Responsive Polymers , Administration, Cutaneous , Drug Delivery Systems , Pharmaceutical Preparations , Polymers/pharmacology
3.
Int J Biol Macromol ; 242(Pt 1): 124684, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37148951

ABSTRACT

To date, very limited work has been done on convenient and active control of insulin release. Herein, we report an electro-responsive insulin delivery system based on thiolated silk fibroin. The disulfide cross-linking points in TSF were reduced and broken to form sulfhydryl groups under electrification, which led to the increase of microneedle swelling degree and promoted insulin release. After power failure, the sulfhydryl group is oxidised to form disulfide bond crosslinking point again, resulting in the reduction of microneedle swelling degree and thus the reduction of release rate. The insulin loaded in the electro-responsive insulin delivery system showed good reversible electroresponsive release performance. The addition of graphene reduced the microneedle resistance and increased the drug release rate under current conditions. In vivo studies on type 1 diabetic mice show that electro-responsive insulin delivery system effectively controls the blood glucose before and after feeding by switching on and off the power supply, and this blood glucose control can be maintained within the safe range (100-200 mg/dL) for a long time (11h). Such electrically responsive delivery microneedles show potential for integration with glucose signal monitoring and are expected to build closed-loop insulin delivery systems.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Fibroins , Mice , Animals , Insulin/chemistry , Fibroins/chemistry , Blood Glucose , Delayed-Action Preparations , Drug Delivery Systems/methods , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Insulin Infusion Systems , Silk
4.
Pharmaceutics ; 15(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36839676

ABSTRACT

Microneedles are a patient-friendly technique for delivering drugs to the site of action in place of traditional oral and injectable administration. Silk fibroin represents an interesting polymeric biomaterial because of its mechanical properties, thermal stability, biocompatibility and possibility of control via genetic engineering. This review focuses on the critical research progress of silk fibroin microneedles since their inception, analyzes in detail the structure and properties of silk fibroin, the types of silk fibroin microneedles, drug delivery applications and clinical trials, and summarizes the future development trend in this field. It also proposes the future research direction of silk fibroin microneedles, including increasing drug loading doses and enriching drug loading types as well as exploring silk fibroin microneedles with stimulation-responsive drug release functions. The safety and effectiveness of silk fibroin microneedles should be further verified in clinical trials at different stages.

5.
Biomimetics (Basel) ; 8(1)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36810381

ABSTRACT

Microneedles (MNs) have attracted great interest as a drug delivery alternative to subcutaneous injections for treating diabetes mellitus. We report MNs prepared from polylysine-modified cationized silk fibroin (SF) for responsive transdermal insulin delivery. Scanning electron microscopy analysis of MNs' appearance and morphology revealed that the MNs were well arranged and formed an array with 0.5 mm pitch, and the length of single MNs is approximately 430 µm. The average breaking force of an MN is above 1.25 N, which guarantees that it can pierce the skin quickly and reach the dermis. Cationized SF MNs are pH-responsive. MNs dissolution rate increases as pH decreases and the rate of insulin release are accelerated. The swelling rate reached 223% at pH = 4, while only 172% at pH = 9. After adding glucose oxidase, cationized SF MNs are glucose-responsive. As the glucose concentration increases, the pH inside the MNs decreases, the MNs' pore size increases, and the insulin release rate accelerates. In vivo experiments demonstrated that in normal Sprague Dawley (SD) rats, the amount of insulin released within the SF MNs was significantly smaller than that in diabetic rats. Before feeding, the blood glucose (BG) of diabetic rats in the injection group decreased rapidly to 6.9 mmol/L, and the diabetic rats in the patch group gradually reduced to 11.7 mmol/L. After feeding, the BG of diabetic rats in the injection group increased rapidly to 33.1 mmol/L and decreased slowly, while the diabetic rats in the patch group increased first to 21.7 mmol/L and then decreased to 15.3 mmol/L at 6 h. This demonstrated that the insulin inside the microneedle was released as the blood glucose concentration increased. Cationized SF MNs are expected to replace subcutaneous injections of insulin as a new modality for diabetes treatment.

6.
Front Bioeng Biotechnol ; 10: 940634, 2022.
Article in English | MEDLINE | ID: mdl-35814001

ABSTRACT

Constructing an engineered hepatic lobule-mimetic model is challenging owing to complicated lobular architecture and crucial hepatic functionality. Our previous study has demonstrated the feasibility of using silk fibroin (SF) scaffolds as functional templates for engineering hepatic lobule-like constructs. But the unsatisfactory chemical and physical performances of the SF-only scaffold and the inherent defect in the functional activity of the carcinoma-derived seeding cells remain to be addressed to satisfy the downstream application demand. In this study, SF-collagen I (SFC) composite scaffolds with improved physical and chemical properties were fabricated, and their utilization for bioengineering a more hepatic lobule-like construct was explored using the immortalized human hepatocyte-derived liver progenitor-like cells (iHepLPCs) and endothelial cells incorporated in the dynamic culture system. The SFC scaffolds prepared through the directional lyophilization process showed radially aligned porous structures with increased swelling ratio and porosity, ameliorative mechanical stiffness that resembled the normal liver matrix more closely, and improved biocompatibility. The iHepLPCs displayed a hepatic plate-like distribution and differentiated into matured hepatocytes with improved hepatic function in vitro and in vivo. Moreover, hepatocyte-endothelial cell interphase arrangement was generated in the co-culture compartment with improved polarity, bile capillary formation, and enhanced liver functions compared with the monocultures. Thus, a more biomimetic hepatic lobule-like model was established and could provide a valuable and robust platform for various applications, including bioartificial liver and drug screening.

7.
Pharmaceutics ; 13(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34959479

ABSTRACT

As a patient-friendly technology, drug-loaded microneedles can deliver drugs through the skin into the body. This system has broad application prospects and is receiving wide attention. Based on the knowledge acquired in this work, we successfully developed a melatonin-loaded microneedle prepared from proline/melatonin/silk fibroin. The engineered microneedles' morphological, physical, and chemical properties were characterized to investigate their structural transformation mechanism and transdermal drug-delivery capabilities. The results indicated that the crystal structure of silk fibroin in drug-loaded microneedles was mainly Silk I crystal structure, with a low dissolution rate and suitable swelling property. Melatonin-loaded microneedles showed high mechanical properties, and the breaking strength of a single needle was 1.2 N, which could easily be penetrated the skin. The drug release results in vitro revealed that the effective drug concentration was obtained quickly during the early delivery. The successful drug concentration was maintained through continuous release at the later stage. For in vivo experimentation, the Sprague Dawley (SD) rat model of insomnia was constructed. The outcome exhibited that the melatonin-loaded microneedle released the drug into the body through the skin and maintained a high blood concentration (over 5 ng/mL) for 4-6 h. The maximum blood concentration was above 10 ng/mL, and the peak time was 0.31 h. This system indicates that it achieved the purpose of mimicking physiological release and treating insomnia.

8.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34281160

ABSTRACT

Silk fibroin (SF) has attracted much attention due to its high, tunable mechanical strength and excellent biocompatibility. Imparting the ability to respond to external stimuli can further enhance its scope of application. In order to imbue stimuli-responsive behavior in silk fibroin, we propose a new conjugated material, namely cationic SF (CSF) obtained by chemical modification of silk fibroin with ε-Poly-(L-lysine) (ε-PLL). This pH-responsive CSF hydrogel was prepared by enzymatic crosslinking using horseradish peroxidase and H2O2. Zeta potential measurements and SDS-PAGE gel electrophoresis show successful synthesis, with an increase in isoelectric point from 4.1 to 8.6. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) results show that the modification does not affect the crystalline structure of SF. Most importantly, the synthesized CSF hydrogel has an excellent pH response. At 10 wt.% ε-PLL, a significant change in swelling with pH is observed. We further demonstrate that the hydrogel can be glucose-responsive by the addition of glucose oxidase (GOx). At high glucose concentration (400 mg/dL), the swelling of CSF/GOx hydrogel is as high as 345 ± 16%, while swelling in 200 mg/dL, 100 mg/dL and 0 mg/dL glucose solutions is 237 ± 12%, 163 ± 12% and 98 ± 15%, respectively. This shows the responsive swelling of CSF/GOx hydrogels to glucose, thus providing sufficient conditions for rapid drug release. Together with the versatility and biological properties of fibroin, such stimuli-responsive silk hydrogels have great potential in intelligent drug delivery, as soft matter substrates for enzymatic reactions and in other biomedical applications.


Subject(s)
Drug Delivery Systems/methods , Fibroins/chemistry , Glucose/metabolism , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Drug Liberation , Fibroins/metabolism , Glucose/chemistry , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Polylysine/chemistry , Silk/chemistry , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction
9.
ACS Biomater Sci Eng ; 7(8): 3594-3607, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34308644

ABSTRACT

Highly absorbent polymers have a wide range of applications in biomaterials, agriculture, physiological products of daily uses, and others. Silk fibroin, as a natural biomaterial with excellent biocompatibility and tunable mechanical properties, shows good prospects in the field of biomedicine applications. However, the dried fibroin hydrogel has very low absorbency. In this work, silk fibroin protein is used as the carrier, riboflavin as the photosensitizer, and accordingly, the hydrogel is prepared by free radical cross-linking under ultraviolet light. The fibroin in the hydrogel contains mainly the random coil structure. The covalent bond cross-linking hinders the crystallization of the silk fibroin, thereby an amorphous silk fibroin hydrogel is obtained. After drying, this xerogel can absorb water 90 times more than its own mass and assimilates a good amount of water within a minute. In vitro and in vivo rabbit ear hemostasis experiments show that this fabricated xerogel has good hemostatic properties. Therefore, this xerogel exhibits good promise for rapid hemostasis of wounds and absorbing other body exudates.


Subject(s)
Fibroins , Animals , Biocompatible Materials , Hydrogels , Polymers , Rabbits
10.
Int J Mol Sci ; 22(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923636

ABSTRACT

The crystalline structure of silk fibroin Silk I is generally considered to be a metastable structure; however, there is no definite conclusion under what circumstances this crystalline structure is stable or the crystal form will change. In this study, silk fibroin solution was prepared from B. Mori silkworm cocoons, and a combined method of freeze-crystallization and freeze-drying at different temperatures was used to obtain stable Silk I crystalline material and uncrystallized silk material, respectively. Different concentrations of methanol and ethanol were used to soak the two materials with different time periods to investigate the effect of immersion treatments on the crystalline structure of silk fibroin materials. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman scattering spectroscopy (Raman), Scanning electron microscope (SEM), and Thermogravimetric analysis (TGA) were used to characterize the structure of silk fibroin before and after the treatments. The results showed that, after immersion treatments, uncrystallized silk fibroin material with random coil structure was transformed into Silk II crystal structure, while the silk material with dominated Silk I crystal structure showed good long-term stability without obvious transition to Silk II crystal structure. α-chymotrypsin biodegradation study showed that the crystalline structure of silk fibroin Silk I materials is enzymatically degradable with a much lower rate compared to uncrystallized silk materials. The crystalline structure of Silk I materials demonstrate a good long-term stability, endurance to alcohol sterilization without structural changes, and can be applied to many emerging fields, such as biomedical materials, sustainable materials, and biosensors.


Subject(s)
Fibroins/chemistry , Chymotrypsin/metabolism , Fibroins/standards , Hot Temperature , Protein Denaturation , Protein Stability , Proteolysis
11.
J Biomed Nanotechnol ; 17(12): 2433-2443, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34974866

ABSTRACT

To clarify whether nanoparticles of silk sericin (SS) and silk fibroin (SF) can induce inflammation and immune responses, we analyzed splenocyte proliferation, apoptosis and cytokine release to identify the effects of SS and SF on mouse splenocytes in vitro. We implanted mice with SS and SF through intraperitoneal, intramuscular, and subcutaneous routes to evaluate the innate and adaptive immune response to SS and SF in vivo. Cytokines in the serum and spleen were analyzed by Luminex and antibody array. Antigen-specific antibodies were evaluated by enzyme-linked immunosorbent assay (ELISA) at week 1 and 5 after implantation. Distinct cell populations in the spleen and bone marrow were analyzed by flow cytometry. SS suppressed the proliferation of splenocytes and CD11b+CD27- NK cells, induced splenocyte apoptosis, and increased interleukin-1 ß (IL-1 ß) and tumor necrosis factor-α (TNF-α) in the culture supernatant. SF suppressed splenocyte proliferation, induced splenocyte apoptosis, and increased the titer of TNF-α in culture supernatants. At both week 1 and 5 after implantation with SS, mouse serum interleukin-1 α (IL-1 α) and keratinocyte chemoattractant (KC) were decreased, SS-specific antibody was increased, the proportion of bone marrow CD4+ T cells was increased, and the proportion of splenic neutrophils was decreased. At week 5 after subcutaneous implantation with SF, mouse serum IL-1α, and splenic IL-6, TIMP-1, IL-4, MCP-1, IFN-γ, TCA-3, TNF-α, and IL-17 were decreased. SS was able to induce a mild immune response, as evidenced by CD4+ T cell activation, splenocyte apoptosis, and antigen-specific antibody secretion. Comparatively, SF had low immunogenicity and anti-inflammatory properties.


Subject(s)
Sericins , Animals , Antibody Formation , Cytokines , Lymphocyte Activation , Mice , Tumor Necrosis Factor-alpha
12.
ACS Appl Bio Mater ; 3(5): 3248-3259, 2020 May 18.
Article in English | MEDLINE | ID: mdl-35025367

ABSTRACT

Silk fibroin is a multisegment natural protein composed of a heavy (H) chain, a light (L) chain and a P25 glycoprotein chain. Herein, we developed a dialysis separation technique under reducing conditions to break the disulfide bond between the H-chain and L-chain and remove the low-molecular-weight portions of the protein. Thus, a high-molecular-weight silk fibroin polypeptide (HSF) material was obtained. SDS-PAGE electrophoresis showed that the molecular weight of HSF was over 80 kDa, similar to the size of the silk fibroin H-chain. Amino acid analysis result demonstrated that the amino acid composition of HSF was almost identical to that of H-chain composition. Importantly, the HSF material obtained has a high surface activity, which can reduce the surface tension of water to below 20 mN/m; at high temperature and high concentration, it can also form a unique nanofibrous network with a lamellar crystalline structure. HSF can further form a rod-shaped structure in a strong polar environment and become a star-shaped fibrous network in a weak polar environment. When the pH value of HSF solution was adjusted from 6 to 8, a structural transition from a folded crank sheet-like structure with micellar beads to a ring-like fibrous structure was observed. During the conversion of HSF from colloidal particles to nanofibers, its molecular conformation also transformed from random coils to ß-sheets. These tunable properties indicate that HSF materials have a wide range of applications in biomedical and green chemistry fields.

13.
ACS Biomater Sci Eng ; 6(6): 3422-3429, 2020 06 08.
Article in English | MEDLINE | ID: mdl-33463180

ABSTRACT

To reduce the pain caused by subcutaneous injections, microneedle patches as the new transdermal drug delivery method are gaining increased attention. In this study, we fabricated a composite insulin-loaded microneedle patch. Silk fibroin, a natural polymer material, was used as the raw material. The tip of the microneedle had good dissolving property and was able to dissolve rapidly to promote the release of insulin. The pedestal had the property of swelling without dissolving and was carrying insulin as a drug store. The insulin carried by the pedestal could release continuously through the micropore channels created by the microneedles. This kind of microneedle could achieve a sustained release effect. It was observed that the insulin had good storage stability in this kind of microneedle, and it maintained more than 90% of its biological activity after 30 days. The results of transdermal delivery to diabetic rats showed that the microneedle patches displayed an apparent hypoglycemic effect and indicated a sustained release effect. These drug-loaded silk microneedle patches may act as potential delivery systems for the treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Fibroins , Administration, Cutaneous , Animals , Diabetes Mellitus, Experimental/drug therapy , Fibroins/therapeutic use , Insulin/therapeutic use , Needles , Rats
14.
RSC Adv ; 10(11): 6163-6171, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-35496012

ABSTRACT

This work illustrates the feasibility of a microneedle based electrochemical biosensor for continuous glucose monitoring. The device consists of three silk/d-sorbitol pyramidal microneedles integrated with platinum (Pt) and silver (Ag) wires and immobilized glucose selective enzyme (glucose oxidase, GOD) during fabrication. The silk/d-sorbitol composite can provide a biocompatible environment for the enzyme molecules. The break strength can be controlled by the ratio of silk to d-sorbitol, which guarantees microneedle penetrate into skin. The enzymatic-amperometric responses and glucose concentration were linearly correlated, and cover physiological conditions. The microneedle displays high stability both in long-term monitoring and storage, even at 37 °C. Our results reveal that this new microneedle biosensor is a promising tool for wearable minimally invasive continuous glucose monitoring in practical applications.

15.
Polymers (Basel) ; 11(11)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661857

ABSTRACT

Silk fibroin (SF) is a natural material with good biocompatibility and excellent mechanical properties, which are complementary to graphene with ultrahigh electrical conductivity. In this study, to maximally combine graphene and silk fibroin, a well-dispersed silk fibroin/graphene suspension was successfully prepared in a simple and effective way. Then we prepared a flexible conductive SF/graphene film with a minimum resistance of 72.1 ± 4.7 Ω/sq by the casting method. It was found that the electrical conductivity of the SF/graphene film was related to the water content of the film, and the variation was more than 200 times. Therefore, it will play an important role in the field of humidity sensors. It also has excellent mechanical properties in both wet and dry states. These unique features make this material a promising future in the fields of biomedical applications, wearable sensors, and implantable internal sensors.

16.
Int J Biol Macromol ; 134: 838-845, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31103592

ABSTRACT

A photocurable silk fibroin hydrogel is prepared, for the first time, using natural silk protein fibroin and biophotosensitizer riboflavin. Riboflavin is excited by ultraviolet light to generate a triplet state which is transferred to produce active oxygen radicals with singlet oxygen as the main component. Active oxygen radicals can induce chemical cross-linking of amino-, phenol- and other groups in the silk fibroin macromolecules to form a photocurable hydrogel. The different biophysical characterizations of the gelation of this modified fibroin protein solution were studied by using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, microplate reader and texture analyzer. The aggregate structures, surface morphologies, mechanical properties, light transmission and degradation properties of the gel were studied. The investigations showed that the silk fibroin/riboflavin hydrogels predominantly have random coils or alpha helix structures. These gels show resilience up to 90% after 80% compression and a light transmission of up to 97%. The cell culture experiment exhibits that the hydrogel has a satisfactory cytocompatibility.


Subject(s)
Biocompatible Materials/chemistry , Chemical Phenomena , Elasticity , Hydrogels/chemistry , Silk/chemistry , Animals , Cell Proliferation , Fibroins/chemistry , Mechanical Phenomena , Mice , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
17.
ACS Biomater Sci Eng ; 5(4): 1887-1894, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-33405562

ABSTRACT

Silk fibroin has widely been used in biomedical applications for its excellent biocompatibility, degradability, and mechanical properties. Microneedles are a suitable method for transdermal drug delivery. In this work, we have prepared microneedles using silk fibroin as the main material and have added proline to change its crystal structure. The fabricated microneedles are nontoxic and degradable and show relatively slow drug release. Our results indicate that the fibroin/proline microneedles can act as carriers of insulin. Fourier transform infrared (FTIR) observations show that the structure of proline-treated fibroin is transformed from random coils to ß-sheets. A more regular arrangement is formed between the molecular segments. X-ray diffraction patterns show that proline has good compatibility with fibroin and induces the secondary conformation of the microneedles to a Silk I type structure. The needles have enough strength to pierce the stratum corneum of the skin. In vitro release experiments with insulin indicate that the release time from the microneedles is maintained up to 60 h. This system of delivery may provide a painless and effective route of insulin intake for the treatment of diabetic patients.

18.
Macromol Biosci ; 19(3): e1800252, 2019 03.
Article in English | MEDLINE | ID: mdl-30294916

ABSTRACT

Chinese nonmulberry temperate oak tasar/tussah, Antheraea pernyi (Ap) silk is a natural biopolymer that has attracted considerable attention as a biomaterial. The proteinaceous components of Ap silk proteins, namely fibroin and sericin may represent an alternative over mulberry Bombyx mori silk proteins. In fact, the silk fibroin (SF) of Ap is rich in Arginyl-Glycyl-Aspartic acid (RGD) peptides, which facilitate the adhesion and proliferation of various cell types. The possibility of processing Ap silk proteins into different distinct 2D- and 3D-based matrices is described in earlier studies, such as membranes, nanofibers, scaffolds, and micro/nanoparticles, contributing to a different rate of degradation, mechanical properties, and biological performance useful for various biomedical applications. This review summarizes the current advances and developments on nonmulberry Chinese oak tasar silk protein (fibroin and sericin)-based biomaterials and their potential uses in tissue engineering, regenerative medicine, and therapeutic delivery strategies.


Subject(s)
Bombyx/chemistry , Fibroins/chemistry , Insect Proteins/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry , Sericins/chemistry , Tissue Engineering , Animals
19.
J Tissue Eng Regen Med ; 12(9): 1959-1971, 2018 09.
Article in English | MEDLINE | ID: mdl-30055109

ABSTRACT

Multidrug resistance (MDR) is one of the major obstacles to improving outcomes of chemotherapy in tumour patients. However, progress has been slow to overcome this phenomenon due to the limitations of current cell/tissue models in recapitulating MDR behaviour of tumour cells in vitro. To address this issue, a more pathologically relevant, three-dimensional (3D) culture of human breast cancer cells was developed by seeding the adriamycin-resistant cells MCF-7R in silk-collagen scaffolds. The cultures of the parental cell line MCF-7 served as controls. Distinct growth profiles of MCF-7R and MCF-7 cells were observed when they were cultured in the scaffolds in comparison with those in the monolayer culture, including cell proliferation, cellular aggregate formation, and expression of drug resistance-related genes/proteins. Moreover, the 3D cultures of these cell lines especially the cultures of MCF-7R exhibited a significantly enhanced drug resistance evidenced by their increased IC50 values to the anticancer drugs and improved drug efflux capability. An altered cell cycle distribution and improved percentage of breast cancer stem cell (BCSC)-like cells was also found in the present study. This might play an important role in promoting the drug-resistance production in those 3D cultures. Thus, we established improved 3D cultures of MDR human breast cancer. It would provide a robust tissue model for use to evaluate the efficacy of anticancer drugs, explore mechanisms of MDR, and enrich BCSCs in vitro.


Subject(s)
Breast Neoplasms/pathology , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Tissue Culture Techniques/methods , Breast Neoplasms/genetics , Breast Neoplasms/ultrastructure , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Doxorubicin/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Silk/chemistry , Tissue Scaffolds/chemistry
20.
Int J Biol Macromol ; 106: 48-56, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28778522

ABSTRACT

In this paper, a swelling-modified silk fibroin (SF) microneedle for transdermal drug delivery is presented. The microneedles undergo a phase transition from a dried and rigid state to a semi-solid, acerose hydrogel state with a controlled 3-dimensional (3D) porous network structure. Different micromolecular reagents have been studied for mixing with aqueous silk fibroin to endow a swellable and insoluble capacity to the SF. The aqueous SF composite is poured on a polydimethylsiloxane (PDMS) mold with arranged micropores on its surface to fabricate SF microneedles with high fidelity and mechanical robustness. The results demonstrate that 2-ethoxyethanol (ECS) modified SF microneedles can easily pierce porcine skin with a depth of ∼200µm in vitro, and transform into semi-solid hydrogels with 50-700nm porous network inside. These swelling-modified microneedles can accomplish a significantly enhanced transdermal drug release capacity in proportion to their swelling characteristics. The better swelling capacity of the microneedles produces larger pores, resulting in higher transdermal drug release kinetics. There is also a relationship between swollen pore dimensions and the molecular weights of encapsulated therapeutics. The controllable properties of these SF microneedles coupled with their high biocompatibility, render swell-to-release ECS/SF composites as viable transdermal delivery devices.


Subject(s)
Biocompatible Materials/chemistry , Drug Delivery Systems/instrumentation , Ethylene Glycols/chemistry , Fibroins/chemistry , Hydrogels/chemistry , Administration, Cutaneous , Animals , Bombyx , Dextrans/metabolism , Dextrans/pharmacokinetics , Dimethylpolysiloxanes/chemistry , Drug Delivery Systems/methods , Drug Liberation , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Fluorescein-5-isothiocyanate/pharmacokinetics , Kinetics , Needles , Phase Transition , Porosity , Skin/metabolism , Swine , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...