Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Gastroenterol ; 58(9): 894-907, 2023 09.
Article in English | MEDLINE | ID: mdl-37227481

ABSTRACT

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is an advanced form of chronic fatty liver disease, which is a driver of hepatocellular carcinoma. However, the roles of the C5aR1 in the NASH remain poorly understood. Here, we aimed to investigate the functions and mechanisms of the C5aR1 on hepatic inflammation and fibrosis in murine NASH model. METHODS: Mice were fed a normal chow diet with corn oil (ND + Oil), a Western diet with corn oil (WD + Oil) or a Western diet with carbon tetrachloride (WD + CCl4) for 12 weeks. The effects of the C5a-C5aR1 axis on the progression of NASH were analyzed and the underlying mechanisms were explored. RESULTS: Complement factor C5a was elevated in NASH mice. C5 deficiency reduced hepatic lipid droplet accumulation in the NASH mice. The hepatic expression levels of TNFα, IL-1ß and F4/80 were decreased in C5-deficient mice. C5 loss alleviated hepatic fibrosis and downregulated the expression levels of α-SMA and TGFß1. C5aR1 deletion reduced inflammation and fibrosis in NASH mice. Transcriptional profiling of liver tissues and KEGG pathway analysis revealed that several pathways such as Toll-like receptor signaling, NFκB signaling, TNF signaling, and NOD-like receptor signaling pathway were enriched between C5aR1 deficiency and wild-type mice. Mechanistically, C5aR1 deletion decreased the expression of TLR4 and NLRP3, subsequently regulating macrophage polarization. Moreover, C5aR1 antagonist PMX-53 treatment mitigated the progression of NASH in mice. CONCLUSIONS: Blockade of the C5a-C5aR1 axis reduces hepatic steatosis, inflammation, and fibrosis in NASH mice. Our data suggest that C5aR1 may be a potential target for drug development and therapeutic intervention of NASH.


Subject(s)
Hepatitis , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Toll-Like Receptor 4/metabolism , Corn Oil/metabolism , Corn Oil/therapeutic use , Mice, Knockout , Liver/pathology , Fibrosis , Liver Cirrhosis/pathology , Disease Models, Animal , Inflammation/drug therapy , Inflammation/pathology , Signal Transduction , Liver Neoplasms/pathology , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...