Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Microbiol ; 162(8): 756-63, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21740968

ABSTRACT

Autophagy is a highly conserved process in lower to higher eukaryotic organisms, and occurs in many types of cells as tissues are remodeled during development. In this study, we investigated the functional role of the Trichoderma reesei TrATG5 gene, which encodes an essential protein required for autophagy. TrATG5 is conserved in structure and function in the filamentous fungi and might clearly rescue the pathogenicity function of MgATG5 in Magnaporthe oryzae. Target gene disruption was used to study the functions of TrATG5. It was found that the autophagic process was blocked in the TrATG5 deletion mutant. The mutant was sensitive to nutrient starvation, with abnormal conidiophores and reduced production of conidia. This new evidence might help to elucidate the molecular machinery of autophagy in filamentous fungi.


Subject(s)
Autophagy , Fungal Proteins/metabolism , Spores, Fungal/growth & development , Trichoderma/cytology , Trichoderma/metabolism , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , Molecular Sequence Data , Sequence Alignment , Spores, Fungal/chemistry , Spores, Fungal/genetics , Spores, Fungal/metabolism , Trichoderma/genetics , Trichoderma/growth & development
2.
J Air Waste Manag Assoc ; 48(8): 711-720, 1998 Aug.
Article in English | MEDLINE | ID: mdl-28060680

ABSTRACT

This paper presents results obtained from a performance study on the biotreatment of 1,3-butadiene in an air stream using a reactor that consisted of a two-stage, in-series biotrickling filter connected with a three-stage, in-series biofilter. Slags and pig manure-based media were used as packing materials for the biotrickling filter and the biofilter, respectively. Experimental results indicated that, for the biotrickling filter portion, the butadiene elimination capacities were below 5 g/m3/hr for loadings of less than 25 g/m3/hr, and the butadiene removal efficiency was only around 17%. For the biofilter portion, the elimination capacities ranged from 10 to 107 g/m3/hr for loadings of less than 148 g/m3/hr. The average butadiene removal efficiency was 75-84% for superficial gas velocities of 53-142 m/hr and a loading range of 10-120 g/m3/hr. The elimination capacity approached a maximum of 108 g/m3/hr for a loading of 150 g/m3/hr. The elimination rates of butadiene in both the biotrickling filter and biofilter were mass-transfer controlled for influent butadiene concentrations below about 600 ppm for superficial gas velocities of 29-142 m/hr. The elimination capacity was significantly higher in the biofilter than in the biotrickling filter. This discrepancy may be attributed to the higher mass-transfer coefficient and gas-solid interfacial area offered for transferring the gaseous butadiene in the biofilter.

SELECTION OF CITATIONS
SEARCH DETAIL
...